You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
108 lines
3.9 KiB
108 lines
3.9 KiB
import argparse
|
|
import hashlib
|
|
import os
|
|
|
|
import mxnet as mx
|
|
import gluoncv
|
|
import torch
|
|
from timm import create_model
|
|
|
|
parser = argparse.ArgumentParser(description='Convert from MXNet')
|
|
parser.add_argument('--model', default='all', type=str, metavar='MODEL',
|
|
help='Name of model to train (default: "all"')
|
|
|
|
|
|
def convert(mxnet_name, torch_name):
|
|
# download and load the pre-trained model
|
|
net = gluoncv.model_zoo.get_model(mxnet_name, pretrained=True)
|
|
|
|
# create corresponding torch model
|
|
torch_net = create_model(torch_name)
|
|
|
|
mxp = [(k, v) for k, v in net.collect_params().items() if 'running' not in k]
|
|
torchp = list(torch_net.named_parameters())
|
|
torch_params = {}
|
|
|
|
# convert parameters
|
|
# NOTE: we are relying on the fact that the order of parameters
|
|
# are usually exactly the same between these models, thus no key name mapping
|
|
# is necessary. Asserts will trip if this is not the case.
|
|
for (tn, tv), (mn, mv) in zip(torchp, mxp):
|
|
m_split = mn.split('_')
|
|
t_split = tn.split('.')
|
|
print(t_split, m_split)
|
|
print(tv.shape, mv.shape)
|
|
|
|
# ensure ordering of BN params match since their sizes are not specific
|
|
if m_split[-1] == 'gamma':
|
|
assert t_split[-1] == 'weight'
|
|
if m_split[-1] == 'beta':
|
|
assert t_split[-1] == 'bias'
|
|
|
|
# ensure shapes match
|
|
assert all(t == m for t, m in zip(tv.shape, mv.shape))
|
|
|
|
torch_tensor = torch.from_numpy(mv.data().asnumpy())
|
|
torch_params[tn] = torch_tensor
|
|
|
|
# convert buffers (batch norm running stats)
|
|
mxb = [(k, v) for k, v in net.collect_params().items() if any(x in k for x in ['running_mean', 'running_var'])]
|
|
torchb = [(k, v) for k, v in torch_net.named_buffers() if 'num_batches' not in k]
|
|
for (tn, tv), (mn, mv) in zip(torchb, mxb):
|
|
print(tn, mn)
|
|
print(tv.shape, mv.shape)
|
|
|
|
# ensure ordering of BN params match since their sizes are not specific
|
|
if 'running_var' in tn:
|
|
assert 'running_var' in mn
|
|
if 'running_mean' in tn:
|
|
assert 'running_mean' in mn
|
|
|
|
torch_tensor = torch.from_numpy(mv.data().asnumpy())
|
|
torch_params[tn] = torch_tensor
|
|
|
|
torch_net.load_state_dict(torch_params)
|
|
torch_filename = './%s.pth' % torch_name
|
|
torch.save(torch_net.state_dict(), torch_filename)
|
|
with open(torch_filename, 'rb') as f:
|
|
sha_hash = hashlib.sha256(f.read()).hexdigest()
|
|
final_filename = os.path.splitext(torch_filename)[0] + '-' + sha_hash[:8] + '.pth'
|
|
os.rename(torch_filename, final_filename)
|
|
print("=> Saved converted model to '{}, SHA256: {}'".format(final_filename, sha_hash))
|
|
|
|
|
|
def map_mx_to_torch_model(mx_name):
|
|
torch_name = mx_name.lower()
|
|
if torch_name.startswith('se_'):
|
|
torch_name = torch_name.replace('se_', 'se')
|
|
elif torch_name.startswith('senet_'):
|
|
torch_name = torch_name.replace('senet_', 'senet')
|
|
elif torch_name.startswith('inceptionv3'):
|
|
torch_name = torch_name.replace('inceptionv3', 'inception_v3')
|
|
torch_name = 'gluon_' + torch_name
|
|
return torch_name
|
|
|
|
|
|
ALL = ['resnet18_v1b', 'resnet34_v1b', 'resnet50_v1b', 'resnet101_v1b', 'resnet152_v1b',
|
|
'resnet50_v1c', 'resnet101_v1c', 'resnet152_v1c', 'resnet50_v1d', 'resnet101_v1d', 'resnet152_v1d',
|
|
#'resnet50_v1e', 'resnet101_v1e', 'resnet152_v1e',
|
|
'resnet50_v1s', 'resnet101_v1s', 'resnet152_v1s', 'resnext50_32x4d', 'resnext101_32x4d', 'resnext101_64x4d',
|
|
'se_resnext50_32x4d', 'se_resnext101_32x4d', 'se_resnext101_64x4d', 'senet_154', 'inceptionv3']
|
|
|
|
|
|
def main():
|
|
args = parser.parse_args()
|
|
|
|
if not args.model or args.model == 'all':
|
|
for mx_model in ALL:
|
|
torch_model = map_mx_to_torch_model(mx_model)
|
|
convert(mx_model, torch_model)
|
|
else:
|
|
mx_model = args.model
|
|
torch_model = map_mx_to_torch_model(mx_model)
|
|
convert(mx_model, torch_model)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|