You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
132 lines
5.2 KiB
132 lines
5.2 KiB
from __future__ import absolute_import
|
|
|
|
#from torchvision.transforms import *
|
|
|
|
from PIL import Image
|
|
import random
|
|
import math
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
class RandomErasingNumpy:
|
|
""" Randomly selects a rectangle region in an image and erases its pixels.
|
|
'Random Erasing Data Augmentation' by Zhong et al.
|
|
See https://arxiv.org/pdf/1708.04896.pdf
|
|
|
|
This 'Numpy' variant of RandomErasing is intended to be applied on a per
|
|
image basis after transforming the image to uint8 numpy array in
|
|
range 0-255 prior to tensor conversion and normalization
|
|
Args:
|
|
probability: The probability that the Random Erasing operation will be performed.
|
|
sl: Minimum proportion of erased area against input image.
|
|
sh: Maximum proportion of erased area against input image.
|
|
r1: Minimum aspect ratio of erased area.
|
|
mean: Erasing value.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
probability=0.5, sl=0.02, sh=1/3, min_aspect=0.3,
|
|
per_pixel=False, rand_color=False,
|
|
pl=0, ph=255, mean=[255 * 0.485, 255 * 0.456, 255 * 0.406],
|
|
out_type=np.uint8):
|
|
self.probability = probability
|
|
if not per_pixel and not rand_color:
|
|
self.mean = np.array(mean).round().astype(out_type)
|
|
else:
|
|
self.mean = None
|
|
self.sl = sl
|
|
self.sh = sh
|
|
self.min_aspect = min_aspect
|
|
self.pl = pl
|
|
self.ph = ph
|
|
self.per_pixel = per_pixel # per pixel random, bounded by [pl, ph]
|
|
self.rand_color = rand_color # per block random, bounded by [pl, ph]
|
|
self.out_type = out_type
|
|
|
|
def __call__(self, img):
|
|
if random.random() > self.probability:
|
|
return img
|
|
|
|
chan, img_h, img_w = img.shape
|
|
area = img_h * img_w
|
|
for attempt in range(100):
|
|
target_area = random.uniform(self.sl, self.sh) * area
|
|
aspect_ratio = random.uniform(self.min_aspect, 1 / self.min_aspect)
|
|
|
|
h = int(round(math.sqrt(target_area * aspect_ratio)))
|
|
w = int(round(math.sqrt(target_area / aspect_ratio)))
|
|
if self.rand_color:
|
|
c = np.random.randint(self.pl, self.ph + 1, (chan,), self.out_type)
|
|
elif not self.per_pixel:
|
|
c = self.mean[:chan]
|
|
if w < img_w and h < img_h:
|
|
top = random.randint(0, img_h - h)
|
|
left = random.randint(0, img_w - w)
|
|
if self.per_pixel:
|
|
img[:, top:top + h, left:left + w] = np.random.randint(
|
|
self.pl, self.ph + 1, (chan, h, w), self.out_type)
|
|
else:
|
|
img[:, top:top + h, left:left + w] = c
|
|
return img
|
|
|
|
return img
|
|
|
|
|
|
class RandomErasingTorch:
|
|
""" Randomly selects a rectangle region in an image and erases its pixels.
|
|
'Random Erasing Data Augmentation' by Zhong et al.
|
|
See https://arxiv.org/pdf/1708.04896.pdf
|
|
|
|
This 'Torch' variant of RandomErasing is intended to be applied to a full batch
|
|
tensor after it has been normalized by dataset mean and std.
|
|
Args:
|
|
probability: The probability that the Random Erasing operation will be performed.
|
|
sl: Minimum proportion of erased area against input image.
|
|
sh: Maximum proportion of erased area against input image.
|
|
r1: Minimum aspect ratio of erased area.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
probability=0.5, sl=0.02, sh=1/3, min_aspect=0.3,
|
|
per_pixel=False, rand_color=False,
|
|
device='cuda'):
|
|
self.probability = probability
|
|
self.sl = sl
|
|
self.sh = sh
|
|
self.min_aspect = min_aspect
|
|
self.per_pixel = per_pixel # per pixel random, bounded by [pl, ph]
|
|
self.rand_color = rand_color # per block random, bounded by [pl, ph]
|
|
self.device = device
|
|
|
|
def __call__(self, batch):
|
|
batch_size, chan, img_h, img_w = batch.size()
|
|
area = img_h * img_w
|
|
for i in range(batch_size):
|
|
if random.random() > self.probability:
|
|
continue
|
|
img = batch[i]
|
|
for attempt in range(100):
|
|
target_area = random.uniform(self.sl, self.sh) * area
|
|
aspect_ratio = random.uniform(self.min_aspect, 1 / self.min_aspect)
|
|
|
|
h = int(round(math.sqrt(target_area * aspect_ratio)))
|
|
w = int(round(math.sqrt(target_area / aspect_ratio)))
|
|
if self.rand_color:
|
|
c = torch.empty(chan, dtype=batch.dtype, device=self.device).normal_()
|
|
elif not self.per_pixel:
|
|
c = torch.zeros(chan, dtype=batch.dtype, device=self.device)
|
|
if w < img_w and h < img_h:
|
|
top = random.randint(0, img_h - h)
|
|
left = random.randint(0, img_w - w)
|
|
if self.per_pixel:
|
|
img[:, top:top + h, left:left + w] = torch.empty(
|
|
(chan, h, w), dtype=batch.dtype, device=self.device).normal_()
|
|
else:
|
|
img[:, top:top + h, left:left + w] = c
|
|
break
|
|
|
|
return batch
|