You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
769 lines
34 KiB
769 lines
34 KiB
#!/usr/bin/env python3
|
|
""" ImageNet Training Script
|
|
|
|
This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet
|
|
training results with some of the latest networks and training techniques. It favours canonical PyTorch
|
|
and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed
|
|
and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit.
|
|
|
|
This script was started from an early version of the PyTorch ImageNet example
|
|
(https://github.com/pytorch/examples/tree/master/imagenet)
|
|
|
|
NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples
|
|
(https://github.com/NVIDIA/apex/tree/master/examples/imagenet)
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman)
|
|
"""
|
|
import argparse
|
|
import time
|
|
import yaml
|
|
import os
|
|
import logging
|
|
from collections import OrderedDict
|
|
from datetime import datetime
|
|
from dataclasses import replace
|
|
from typing import Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torchvision.utils
|
|
|
|
from timm.bits import initialize_device, setup_model_and_optimizer, DeviceEnv, Monitor, Tracker,\
|
|
TrainState, TrainServices, TrainCfg, CheckpointManager, AccuracyTopK, AvgTensor, distribute_bn
|
|
from timm.data import create_dataset, create_transform_v2, create_loader_v2, resolve_data_config,\
|
|
PreprocessCfg, AugCfg, MixupCfg, AugMixDataset
|
|
from timm.models import create_model, safe_model_name, convert_splitbn_model
|
|
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy, JsdCrossEntropy
|
|
from timm.optim import optimizer_kwargs
|
|
from timm.scheduler import create_scheduler
|
|
from timm.utils import setup_default_logging, random_seed, get_outdir, unwrap_model
|
|
|
|
|
|
_logger = logging.getLogger('train')
|
|
|
|
|
|
# The first arg parser parses out only the --config argument, this argument is used to
|
|
# load a yaml file containing key-values that override the defaults for the main parser below
|
|
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
|
|
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
|
|
help='YAML config file specifying default arguments')
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
|
|
|
|
# Dataset / Model parameters
|
|
parser.add_argument('data_dir', metavar='DIR',
|
|
help='path to dataset')
|
|
parser.add_argument('--dataset', '-d', metavar='NAME', default='',
|
|
help='dataset type (default: ImageFolder/ImageTar if empty)')
|
|
parser.add_argument('--train-split', metavar='NAME', default='train',
|
|
help='dataset train split (default: train)')
|
|
parser.add_argument('--val-split', metavar='NAME', default='validation',
|
|
help='dataset validation split (default: validation)')
|
|
parser.add_argument('--model', default='resnet101', type=str, metavar='MODEL',
|
|
help='Name of model to train (default: "countception"')
|
|
parser.add_argument('--pretrained', action='store_true', default=False,
|
|
help='Start with pretrained version of specified network (if avail)')
|
|
parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
|
|
help='Initialize model from this checkpoint (default: none)')
|
|
parser.add_argument('--resume', default='', type=str, metavar='PATH',
|
|
help='Resume full model and optimizer state from checkpoint (default: none)')
|
|
parser.add_argument('--no-resume-opt', action='store_true', default=False,
|
|
help='prevent resume of optimizer state when resuming model')
|
|
parser.add_argument('--num-classes', type=int, default=None, metavar='N',
|
|
help='number of label classes (Model default if None)')
|
|
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
|
|
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
|
|
parser.add_argument('--img-size', type=int, default=None, metavar='N',
|
|
help='Image patch size (default: None => model default)')
|
|
parser.add_argument('--input-size', default=None, nargs=3, type=int,
|
|
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
|
|
parser.add_argument('--crop-pct', default=None, type=float,
|
|
metavar='N', help='Input image center crop percent (for validation only)')
|
|
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
|
|
help='Override mean pixel value of dataset')
|
|
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
|
|
help='Override std deviation of of dataset')
|
|
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
|
|
help='Image resize interpolation type (overrides model)')
|
|
parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N',
|
|
help='input batch size for training (default: 32)')
|
|
parser.add_argument('-vb', '--validation-batch-size-multiplier', type=int, default=1, metavar='N',
|
|
help='ratio of validation batch size to training batch size (default: 1)')
|
|
|
|
# Optimizer parameters
|
|
parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
|
|
help='Optimizer (default: "sgd"')
|
|
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
|
|
help='Optimizer Epsilon (default: None, use opt default)')
|
|
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
|
|
help='Optimizer Betas (default: None, use opt default)')
|
|
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
|
|
help='Optimizer momentum (default: 0.9)')
|
|
parser.add_argument('--weight-decay', type=float, default=0.0001,
|
|
help='weight decay (default: 0.0001)')
|
|
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
|
|
help='Clip gradient norm (default: None, no clipping)')
|
|
parser.add_argument('--clip-mode', type=str, default='norm',
|
|
help='Gradient clipping mode. One of ("norm", "value", "agc")')
|
|
|
|
|
|
# Learning rate schedule parameters
|
|
parser.add_argument('--sched', default='step', type=str, metavar='SCHEDULER',
|
|
help='LR scheduler (default: "step"')
|
|
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
|
|
help='learning rate (default: 0.01)')
|
|
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
|
|
help='learning rate noise on/off epoch percentages')
|
|
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
|
|
help='learning rate noise limit percent (default: 0.67)')
|
|
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
|
|
help='learning rate noise std-dev (default: 1.0)')
|
|
parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT',
|
|
help='learning rate cycle len multiplier (default: 1.0)')
|
|
parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N',
|
|
help='learning rate cycle limit')
|
|
parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR',
|
|
help='warmup learning rate (default: 0.0001)')
|
|
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
|
|
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
|
|
parser.add_argument('--epochs', type=int, default=200, metavar='N',
|
|
help='number of epochs to train (default: 2)')
|
|
parser.add_argument('--epoch-repeats', type=float, default=0., metavar='N',
|
|
help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).')
|
|
parser.add_argument('--start-epoch', default=None, type=int, metavar='N',
|
|
help='manual epoch number (useful on restarts)')
|
|
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
|
|
help='epoch interval to decay LR')
|
|
parser.add_argument('--warmup-epochs', type=int, default=3, metavar='N',
|
|
help='epochs to warmup LR, if scheduler supports')
|
|
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
|
|
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
|
|
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
|
|
help='patience epochs for Plateau LR scheduler (default: 10')
|
|
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
|
|
help='LR decay rate (default: 0.1)')
|
|
|
|
# Augmentation & regularization parameters
|
|
parser.add_argument('--no-aug', action='store_true', default=False,
|
|
help='Disable all training augmentation, override other train aug args')
|
|
parser.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT',
|
|
help='Random resize scale (default: 0.08 1.0)')
|
|
parser.add_argument('--ratio', type=float, nargs='+', default=[3./4., 4./3.], metavar='RATIO',
|
|
help='Random resize aspect ratio (default: 0.75 1.33)')
|
|
parser.add_argument('--hflip', type=float, default=0.5,
|
|
help='Horizontal flip training aug probability')
|
|
parser.add_argument('--vflip', type=float, default=0.,
|
|
help='Vertical flip training aug probability')
|
|
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
|
|
help='Color jitter factor (default: 0.4)')
|
|
parser.add_argument('--aa', type=str, default=None, metavar='NAME',
|
|
help='Use AutoAugment policy. "v0" or "original". (default: None)'),
|
|
parser.add_argument('--aug-splits', type=int, default=0,
|
|
help='Number of augmentation splits (default: 0, valid: 0 or >=2)')
|
|
parser.add_argument('--jsd', action='store_true', default=False,
|
|
help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.')
|
|
parser.add_argument('--reprob', type=float, default=0., metavar='PCT',
|
|
help='Random erase prob (default: 0.)')
|
|
parser.add_argument('--remode', type=str, default='const',
|
|
help='Random erase mode (default: "const")')
|
|
parser.add_argument('--recount', type=int, default=1,
|
|
help='Random erase count (default: 1)')
|
|
parser.add_argument('--resplit', action='store_true', default=False,
|
|
help='Do not random erase first (clean) augmentation split')
|
|
parser.add_argument('--mixup', type=float, default=0.0,
|
|
help='mixup alpha, mixup enabled if > 0. (default: 0.)')
|
|
parser.add_argument('--cutmix', type=float, default=0.0,
|
|
help='cutmix alpha, cutmix enabled if > 0. (default: 0.)')
|
|
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
|
|
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
|
|
parser.add_argument('--mixup-prob', type=float, default=1.0,
|
|
help='Probability of performing mixup or cutmix when either/both is enabled')
|
|
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
|
|
help='Probability of switching to cutmix when both mixup and cutmix enabled')
|
|
parser.add_argument('--mixup-mode', type=str, default='batch',
|
|
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
|
|
parser.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N',
|
|
help='Turn off mixup after this epoch, disabled if 0 (default: 0)')
|
|
parser.add_argument('--smoothing', type=float, default=0.1,
|
|
help='Label smoothing (default: 0.1)')
|
|
parser.add_argument('--train-interpolation', type=str, default='random',
|
|
help='Training interpolation (random, bilinear, bicubic default: "random")')
|
|
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
|
|
help='Dropout rate (default: 0.)')
|
|
parser.add_argument('--drop-connect', type=float, default=None, metavar='PCT',
|
|
help='Drop connect rate, DEPRECATED, use drop-path (default: None)')
|
|
parser.add_argument('--drop-path', type=float, default=None, metavar='PCT',
|
|
help='Drop path rate (default: None)')
|
|
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
|
|
help='Drop block rate (default: None)')
|
|
|
|
# Batch norm parameters (only works with gen_efficientnet based models currently)
|
|
parser.add_argument('--bn-tf', action='store_true', default=False,
|
|
help='Use Tensorflow BatchNorm defaults for models that support it (default: False)')
|
|
parser.add_argument('--bn-momentum', type=float, default=None,
|
|
help='BatchNorm momentum override (if not None)')
|
|
parser.add_argument('--bn-eps', type=float, default=None,
|
|
help='BatchNorm epsilon override (if not None)')
|
|
parser.add_argument('--sync-bn', action='store_true',
|
|
help='Enable NVIDIA Apex or Torch synchronized BatchNorm.')
|
|
parser.add_argument('--dist-bn', type=str, default='',
|
|
help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")')
|
|
parser.add_argument('--split-bn', action='store_true',
|
|
help='Enable separate BN layers per augmentation split.')
|
|
|
|
# Model Exponential Moving Average
|
|
parser.add_argument('--model-ema', action='store_true', default=False,
|
|
help='Enable tracking moving average of model weights')
|
|
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False,
|
|
help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.')
|
|
parser.add_argument('--model-ema-decay', type=float, default=0.9998,
|
|
help='decay factor for model weights moving average (default: 0.9998)')
|
|
|
|
# Misc
|
|
parser.add_argument('--seed', type=int, default=42, metavar='S',
|
|
help='random seed (default: 42)')
|
|
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
|
|
help='how many batches to wait before logging training status')
|
|
parser.add_argument('--recovery-interval', type=int, default=0, metavar='N',
|
|
help='how many batches to wait before writing recovery checkpoint')
|
|
parser.add_argument('--checkpoint-hist', type=int, default=10, metavar='N',
|
|
help='number of checkpoints to keep (default: 10)')
|
|
parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
|
|
help='how many training processes to use (default: 1)')
|
|
parser.add_argument('--save-images', action='store_true', default=False,
|
|
help='save images of input bathes every log interval for debugging')
|
|
parser.add_argument('--amp', action='store_true', default=False,
|
|
help='use NVIDIA Apex AMP or Native AMP for mixed precision training')
|
|
parser.add_argument('--channels-last', action='store_true', default=False,
|
|
help='Use channels_last memory layout')
|
|
parser.add_argument('--pin-mem', action='store_true', default=False,
|
|
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
|
|
parser.add_argument('--output', default='', type=str, metavar='PATH',
|
|
help='path to output folder (default: none, current dir)')
|
|
parser.add_argument('--experiment', default='', type=str, metavar='NAME',
|
|
help='name of train experiment, name of sub-folder for output')
|
|
parser.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC',
|
|
help='Best metric (default: "top1"')
|
|
parser.add_argument('--tta', type=int, default=0, metavar='N',
|
|
help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)')
|
|
parser.add_argument("--local_rank", default=0, type=int)
|
|
parser.add_argument('--use-multi-epochs-loader', action='store_true', default=False,
|
|
help='use the multi-epochs-loader to save time at the beginning of every epoch')
|
|
parser.add_argument('--torchscript', dest='torchscript', action='store_true',
|
|
help='convert model torchscript for inference')
|
|
parser.add_argument('--log-wandb', action='store_true', default=False,
|
|
help='log training and validation metrics to wandb')
|
|
|
|
|
|
def _parse_args():
|
|
# Do we have a config file to parse?
|
|
args_config, remaining = config_parser.parse_known_args()
|
|
if args_config.config:
|
|
with open(args_config.config, 'r') as f:
|
|
cfg = yaml.safe_load(f)
|
|
parser.set_defaults(**cfg)
|
|
|
|
# The main arg parser parses the rest of the args, the usual
|
|
# defaults will have been overridden if config file specified.
|
|
args = parser.parse_args(remaining)
|
|
|
|
# Cache the args as a text string to save them in the output dir later
|
|
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
|
|
return args, args_text
|
|
|
|
|
|
def main():
|
|
setup_default_logging()
|
|
args, args_text = _parse_args()
|
|
|
|
dev_env = initialize_device(amp=args.amp, channels_last=args.channels_last)
|
|
if dev_env.distributed:
|
|
_logger.info('Training in distributed mode with multiple processes, 1 device per process. Process %d, total %d.'
|
|
% (dev_env.global_rank, dev_env.world_size))
|
|
else:
|
|
_logger.info('Training with a single process on 1 device.')
|
|
|
|
random_seed(args.seed, 0) # Set all random seeds the same for model/state init (mandatory for XLA)
|
|
|
|
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
|
|
assert args.aug_splits == 0 or args.aug_splits > 1, 'A split of 1 makes no sense'
|
|
|
|
train_state = setup_train_task(args, dev_env, mixup_active)
|
|
train_cfg = train_state.train_cfg
|
|
|
|
# Set random seeds across ranks differently for train
|
|
# FIXME perhaps keep the same and just set diff seeds for dataloader worker process? what about TFDS?
|
|
random_seed(args.seed, dev_env.global_rank)
|
|
|
|
data_config, loader_eval, loader_train = setup_data(
|
|
args,
|
|
unwrap_model(train_state.model).default_cfg,
|
|
dev_env,
|
|
mixup_active)
|
|
|
|
# setup checkpoint manager
|
|
eval_metric = args.eval_metric
|
|
best_metric = None
|
|
best_epoch = None
|
|
checkpoint_manager = None
|
|
output_dir = None
|
|
if dev_env.primary:
|
|
if args.experiment:
|
|
exp_name = args.experiment
|
|
else:
|
|
exp_name = '-'.join([
|
|
datetime.now().strftime("%Y%m%d-%H%M%S"),
|
|
safe_model_name(args.model),
|
|
str(data_config['input_size'][-1])
|
|
])
|
|
output_dir = get_outdir(args.output if args.output else './output/train', exp_name)
|
|
checkpoint_manager = CheckpointManager(
|
|
hparams=vars(args),
|
|
checkpoint_dir=output_dir,
|
|
recovery_dir=output_dir,
|
|
metric_name=eval_metric,
|
|
metric_decreasing=True if eval_metric == 'loss' else False,
|
|
max_history=args.checkpoint_hist)
|
|
with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
|
|
f.write(args_text)
|
|
|
|
services = TrainServices(
|
|
monitor=Monitor(
|
|
output_dir=output_dir,
|
|
logger=_logger,
|
|
hparams=vars(args),
|
|
output_enabled=dev_env.primary),
|
|
checkpoint=checkpoint_manager,
|
|
)
|
|
|
|
try:
|
|
for epoch in range(train_state.epoch, train_cfg.num_epochs):
|
|
if dev_env.distributed and hasattr(loader_train.sampler, 'set_epoch'):
|
|
loader_train.sampler.set_epoch(epoch)
|
|
if args.mixup_off_epoch and epoch >= args.mixup_off_epoch:
|
|
if loader_train.mixup_enabled:
|
|
loader_train.mixup_enabled = False
|
|
|
|
train_metrics = train_one_epoch(
|
|
state=train_state,
|
|
services=services,
|
|
loader=loader_train,
|
|
dev_env=dev_env,
|
|
)
|
|
|
|
if dev_env.distributed and args.dist_bn in ('broadcast', 'reduce'):
|
|
if dev_env.primary:
|
|
_logger.info("Distributing BatchNorm running means and vars")
|
|
distribute_bn(train_state.model, args.dist_bn == 'reduce', dev_env)
|
|
|
|
eval_metrics = evaluate(
|
|
train_state.model,
|
|
train_state.eval_loss,
|
|
loader_eval,
|
|
services.monitor,
|
|
dev_env)
|
|
|
|
if train_state.model_ema is not None and not args.model_ema_force_cpu:
|
|
if dev_env.distributed and args.dist_bn in ('broadcast', 'reduce'):
|
|
distribute_bn(train_state.model_ema, args.dist_bn == 'reduce', dev_env)
|
|
|
|
ema_eval_metrics = evaluate(
|
|
train_state.model_ema.module,
|
|
train_state.eval_loss,
|
|
loader_eval,
|
|
services.monitor,
|
|
dev_env,
|
|
phase_suffix='EMA')
|
|
eval_metrics = ema_eval_metrics
|
|
|
|
if train_state.lr_scheduler is not None:
|
|
# step LR for next epoch
|
|
train_state.lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
|
|
|
|
if services.monitor is not None:
|
|
services.monitor.write_summary(
|
|
index=epoch,
|
|
results=dict(train=train_metrics, eval=eval_metrics))
|
|
|
|
if checkpoint_manager is not None:
|
|
# save proper checkpoint with eval metric
|
|
best_checkpoint = checkpoint_manager.save_checkpoint(train_state, eval_metrics)
|
|
best_metric, best_epoch = best_checkpoint.sort_key, best_checkpoint.epoch
|
|
|
|
train_state = replace(train_state, epoch=epoch + 1)
|
|
|
|
except KeyboardInterrupt:
|
|
pass
|
|
if best_metric is not None:
|
|
_logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
|
|
|
|
|
|
def setup_train_task(args, dev_env: DeviceEnv, mixup_active: bool):
|
|
|
|
model = create_model(
|
|
args.model,
|
|
pretrained=args.pretrained,
|
|
num_classes=args.num_classes,
|
|
drop_rate=args.drop,
|
|
drop_connect_rate=args.drop_connect, # DEPRECATED, use drop_path
|
|
drop_path_rate=args.drop_path,
|
|
drop_block_rate=args.drop_block,
|
|
global_pool=args.gp,
|
|
bn_tf=args.bn_tf,
|
|
bn_momentum=args.bn_momentum,
|
|
bn_eps=args.bn_eps,
|
|
scriptable=args.torchscript,
|
|
checkpoint_path=args.initial_checkpoint)
|
|
if args.num_classes is None:
|
|
assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
|
|
args.num_classes = model.num_classes # FIXME handle model default vs config num_classes more elegantly
|
|
|
|
if dev_env.primary:
|
|
_logger.info(
|
|
f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}')
|
|
|
|
# enable split bn (separate bn stats per batch-portion)
|
|
if args.split_bn:
|
|
assert args.aug_splits > 1
|
|
model = convert_splitbn_model(model, max(args.aug_splits, 2))
|
|
|
|
train_state = setup_model_and_optimizer(
|
|
dev_env=dev_env,
|
|
model=model,
|
|
optimizer=args.opt,
|
|
optimizer_cfg=optimizer_kwargs(cfg=args),
|
|
clip_fn=args.clip_mode if args.clip_grad is not None else None,
|
|
clip_value=args.clip_grad,
|
|
model_ema=args.model_ema,
|
|
model_ema_decay=args.model_ema_decay,
|
|
resume_path=args.resume,
|
|
use_syncbn=args.sync_bn,
|
|
)
|
|
|
|
# setup learning rate schedule and starting epoch
|
|
# FIXME move into updater?
|
|
lr_scheduler, num_epochs = create_scheduler(args, train_state.updater.optimizer)
|
|
if lr_scheduler is not None and train_state.epoch > 0:
|
|
lr_scheduler.step(train_state.epoch)
|
|
|
|
# setup loss function
|
|
if args.jsd:
|
|
assert args.aug_splits > 1 # JSD only valid with aug splits set
|
|
train_loss_fn = JsdCrossEntropy(num_splits=args.aug_splits, smoothing=args.smoothing)
|
|
elif mixup_active:
|
|
# smoothing is handled with mixup target transform
|
|
train_loss_fn = SoftTargetCrossEntropy()
|
|
elif args.smoothing:
|
|
train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
|
|
else:
|
|
train_loss_fn = nn.CrossEntropyLoss()
|
|
eval_loss_fn = nn.CrossEntropyLoss()
|
|
dev_env.to_device(train_loss_fn, eval_loss_fn)
|
|
|
|
if dev_env.primary:
|
|
_logger.info('Scheduled epochs: {}'.format(num_epochs))
|
|
|
|
train_cfg = TrainCfg(
|
|
num_epochs=num_epochs,
|
|
log_interval=args.log_interval,
|
|
recovery_interval=args.recovery_interval,
|
|
)
|
|
|
|
train_state = replace(
|
|
train_state,
|
|
lr_scheduler=lr_scheduler,
|
|
train_loss=train_loss_fn,
|
|
eval_loss=eval_loss_fn,
|
|
train_cfg=train_cfg,
|
|
)
|
|
|
|
return train_state
|
|
|
|
|
|
def setup_data(args, default_cfg, dev_env: DeviceEnv, mixup_active: bool):
|
|
data_config = resolve_data_config(vars(args), default_cfg=default_cfg, verbose=dev_env.primary)
|
|
|
|
# create the train and eval datasets
|
|
dataset_train = create_dataset(
|
|
args.dataset,
|
|
root=args.data_dir, split=args.train_split, is_training=True,
|
|
batch_size=args.batch_size, repeats=args.epoch_repeats)
|
|
|
|
dataset_eval = create_dataset(
|
|
args.dataset,
|
|
root=args.data_dir, split=args.val_split, is_training=False, batch_size=args.batch_size)
|
|
|
|
# setup mixup / cutmix
|
|
mixup_cfg = None
|
|
if mixup_active:
|
|
mixup_cfg = MixupCfg(
|
|
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
|
|
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
|
|
label_smoothing=args.smoothing, num_classes=args.num_classes)
|
|
|
|
# wrap dataset in AugMix helper
|
|
if args.aug_splits > 1:
|
|
dataset_train = AugMixDataset(dataset_train, num_splits=args.aug_splits)
|
|
|
|
# create data loaders w/ augmentation pipeiine
|
|
train_interpolation = args.train_interpolation
|
|
if args.no_aug or not train_interpolation:
|
|
train_interpolation = data_config['interpolation']
|
|
|
|
if args.no_aug:
|
|
train_aug_cfg = None
|
|
else:
|
|
train_aug_cfg = AugCfg(
|
|
re_prob=args.reprob,
|
|
re_mode=args.remode,
|
|
re_count=args.recount,
|
|
ratio_range=args.ratio,
|
|
scale_range=args.scale,
|
|
hflip_prob=args.hflip,
|
|
vflip_prob=args.vflip,
|
|
color_jitter=args.color_jitter,
|
|
auto_augment=args.aa,
|
|
num_aug_splits=args.aug_splits,
|
|
)
|
|
|
|
train_pp_cfg = PreprocessCfg(
|
|
input_size=data_config['input_size'],
|
|
interpolation=train_interpolation,
|
|
crop_pct=data_config['crop_pct'],
|
|
mean=data_config['mean'],
|
|
std=data_config['std'],
|
|
aug=train_aug_cfg,
|
|
)
|
|
|
|
# if using PyTorch XLA and RandomErasing is enabled, we must normalize and do RE in transforms on CPU
|
|
normalize_in_transform = dev_env.type_xla and args.reprob > 0
|
|
|
|
dataset_train.transform = create_transform_v2(
|
|
cfg=train_pp_cfg, is_training=True, normalize=normalize_in_transform)
|
|
|
|
loader_train = create_loader_v2(
|
|
dataset_train,
|
|
batch_size=args.batch_size,
|
|
is_training=True,
|
|
normalize=not normalize_in_transform,
|
|
pp_cfg=train_pp_cfg,
|
|
mix_cfg=mixup_cfg,
|
|
num_workers=args.workers,
|
|
pin_memory=args.pin_mem,
|
|
use_multi_epochs_loader=args.use_multi_epochs_loader
|
|
)
|
|
|
|
eval_pp_cfg = PreprocessCfg(
|
|
input_size=data_config['input_size'],
|
|
interpolation=data_config['interpolation'],
|
|
crop_pct=data_config['crop_pct'],
|
|
mean=data_config['mean'],
|
|
std=data_config['std'],
|
|
)
|
|
|
|
dataset_eval.transform = create_transform_v2(
|
|
cfg=eval_pp_cfg, is_training=False, normalize=normalize_in_transform)
|
|
|
|
eval_workers = args.workers
|
|
if 'tfds' in args.dataset:
|
|
# FIXME reduce validation issues when using TFDS w/ workers and distributed training
|
|
eval_workers = min(2, args.workers)
|
|
loader_eval = create_loader_v2(
|
|
dataset_eval,
|
|
batch_size=args.validation_batch_size_multiplier * args.batch_size,
|
|
is_training=False,
|
|
normalize=not normalize_in_transform,
|
|
pp_cfg=eval_pp_cfg,
|
|
num_workers=eval_workers,
|
|
pin_memory=args.pin_mem,
|
|
)
|
|
return data_config, loader_eval, loader_train
|
|
|
|
|
|
def train_one_epoch(
|
|
state: TrainState,
|
|
services: TrainServices,
|
|
loader,
|
|
dev_env: DeviceEnv,
|
|
):
|
|
tracker = Tracker()
|
|
loss_meter = AvgTensor() # FIXME move loss meter into task specific TaskMetric
|
|
|
|
state.model.train()
|
|
state.updater.reset() # zero-grad
|
|
|
|
step_end_idx = len(loader) - 1
|
|
tracker.mark_iter()
|
|
for step_idx, (sample, target) in enumerate(loader):
|
|
tracker.mark_iter_data_end()
|
|
|
|
# FIXME move forward + loss into model 'task' wrapper
|
|
with dev_env.autocast():
|
|
output = state.model(sample)
|
|
loss = state.train_loss(output, target)
|
|
|
|
state.updater.apply(loss)
|
|
|
|
tracker.mark_iter_step_end()
|
|
|
|
state.updater.after_step(
|
|
after_train_step,
|
|
state,
|
|
services,
|
|
dev_env,
|
|
step_idx,
|
|
step_end_idx,
|
|
tracker,
|
|
loss_meter,
|
|
(output, target, loss),
|
|
)
|
|
|
|
tracker.mark_iter()
|
|
# end for
|
|
|
|
if hasattr(state.updater.optimizer, 'sync_lookahead'):
|
|
state.updater.optimizer.sync_lookahead()
|
|
|
|
return OrderedDict([('loss', loss_meter.compute().item())])
|
|
|
|
|
|
def after_train_step(
|
|
state: TrainState,
|
|
services: TrainServices,
|
|
dev_env: DeviceEnv,
|
|
step_idx: int,
|
|
step_end_idx: int,
|
|
tracker: Tracker,
|
|
loss_meter: AvgTensor,
|
|
tensors: Tuple[torch.Tensor, ...],
|
|
):
|
|
"""
|
|
After the core loss / backward / gradient apply step, we perform all non-gradient related
|
|
activities here including updating meters, metrics, performing logging, and writing checkpoints.
|
|
|
|
Many / most of these operations require tensors to be moved to CPU, they shoud not be done
|
|
every step and for XLA use they should be done via the optimizer step_closure. This function includes
|
|
everything that should be executed within the step closure.
|
|
|
|
Args:
|
|
state:
|
|
services:
|
|
dev_env:
|
|
step_idx:
|
|
step_end_idx:
|
|
tracker:
|
|
loss_meter:
|
|
tensors:
|
|
|
|
Returns:
|
|
|
|
"""
|
|
end_step = step_idx == step_end_idx
|
|
|
|
with torch.no_grad():
|
|
output, target, loss = tensors
|
|
loss_meter.update(loss, output.shape[0])
|
|
|
|
if state.model_ema is not None:
|
|
# FIXME should ema update be included here or in train / updater step? does it matter?
|
|
state.model_ema.update(state.model)
|
|
|
|
state = replace(state, step_count_global=state.step_count_global + 1)
|
|
cfg = state.train_cfg
|
|
|
|
if services.monitor is not None and end_step or (step_idx + 1) % cfg.log_interval == 0:
|
|
global_batch_size = dev_env.world_size * output.shape[0]
|
|
loss_avg = loss_meter.compute()
|
|
if services.monitor is not None:
|
|
lr_avg = state.updater.get_average_lr()
|
|
services.monitor.log_step(
|
|
'Train',
|
|
step=step_idx,
|
|
step_end=step_end_idx,
|
|
epoch=state.epoch,
|
|
loss=loss_avg.item(),
|
|
rate=tracker.get_avg_iter_rate(global_batch_size),
|
|
lr=lr_avg,
|
|
)
|
|
|
|
if services.checkpoint is not None and cfg.recovery_interval and (
|
|
end_step or (step_idx + 1) % cfg.recovery_interval == 0):
|
|
services.checkpoint.save_recovery(state.epoch, batch_idx=step_idx)
|
|
|
|
if state.lr_scheduler is not None:
|
|
# FIXME perform scheduler update here or via updater after_step call?
|
|
state.lr_scheduler.step_update(num_updates=state.step_count_global)
|
|
|
|
|
|
def evaluate(
|
|
model: nn.Module,
|
|
loss_fn: nn.Module,
|
|
loader,
|
|
logger: Monitor,
|
|
dev_env: DeviceEnv,
|
|
phase_suffix: str = '',
|
|
log_interval: int = 10,
|
|
):
|
|
|
|
tracker = Tracker()
|
|
losses_m = AvgTensor()
|
|
accuracy_m = AccuracyTopK() # FIXME move loss and accuracy modules into task specific TaskMetric obj
|
|
|
|
model.eval()
|
|
|
|
end_idx = len(loader) - 1
|
|
tracker.mark_iter()
|
|
with torch.no_grad():
|
|
for step_idx, (sample, target) in enumerate(loader):
|
|
tracker.mark_iter_data_end()
|
|
last_step = step_idx == end_idx
|
|
|
|
with dev_env.autocast():
|
|
output = model(sample)
|
|
if isinstance(output, (tuple, list)):
|
|
output = output[0]
|
|
loss = loss_fn(output, target)
|
|
|
|
# FIXME, explictly marking step for XLA use since I'm not using the parallel xm loader
|
|
# need to investigate whether parallel loader wrapper is helpful on tpu-vm or only use for 2-vm setup.
|
|
if dev_env.type_xla:
|
|
dev_env.mark_step()
|
|
elif dev_env.type_cuda:
|
|
dev_env.synchronize()
|
|
|
|
# FIXME uncommenting this fixes race btw model `output`/`loss` and loss_m/accuracy_m meter input
|
|
# for PyTorch XLA GPU use.
|
|
# This issue does not exist for normal PyTorch w/ GPU (CUDA) or PyTorch XLA w/ TPU.
|
|
# loss.item()
|
|
|
|
tracker.mark_iter_step_end()
|
|
losses_m.update(loss, output.size(0))
|
|
accuracy_m.update(output, target)
|
|
|
|
if last_step or step_idx % log_interval == 0:
|
|
top1, top5 = accuracy_m.compute().values()
|
|
loss_avg = losses_m.compute()
|
|
logger.log_step(
|
|
'Eval',
|
|
step=step_idx,
|
|
step_end=end_idx,
|
|
loss=loss_avg.item(),
|
|
top1=top1.item(),
|
|
top5=top5.item(),
|
|
phase_suffix=phase_suffix,
|
|
)
|
|
tracker.mark_iter()
|
|
|
|
top1, top5 = accuracy_m.compute().values()
|
|
results = OrderedDict([('loss', losses_m.compute().item()), ('top1', top1.item()), ('top5', top5.item())])
|
|
return results
|
|
|
|
|
|
def _mp_entry(*args):
|
|
main()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|