PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Go to file
Dushyant Mehta 2404361f62
correct asset paths
5 years ago
convert Add working Gluon Xception-65 model. Some cleanup still needed. 6 years ago
notebooks ImageNet-1k vs ImageNet-v2 comparison 6 years ago
results Update results-all.csv with latest models/weights 5 years ago
timm correct asset paths 5 years ago
.gitattributes Add .gitattributes 6 years ago
.gitignore Add gitignore 6 years ago
LICENSE Add Apache LICENSE file 6 years ago
README.md Add ResNet deep tiered stem and model weights for seresnext26t_32x4d and seresnext26d_32x4d 5 years ago
clean_checkpoint.py Finish with HRNet, weights and models updated. Improve consistency in model classifier/global pool treatment. 5 years ago
distributed_train.sh Fix distributed train script 6 years ago
inference.py A number of tweaks to arguments, epoch handling, config 6 years ago
requirements.txt Update EfficientNet comments, MobileNetV3 non-TF create fns, fix factory arg checks, bump PyTorch version req to 1.2 5 years ago
setup.py markdown in setup.py 6 years ago
sotabench.py Finish with HRNet, weights and models updated. Improve consistency in model classifier/global pool treatment. 5 years ago
train.py Missed update dist-bn logic for EMA model 5 years ago
validate.py Add basic image folder style dataset to read directly out of tar files, example in validate.py 6 years ago

README.md

PyTorch Image Models, etc

What's New

Dec 28, 2019

  • Add new model weights and training hparams (see Training Hparams section)
    • seresnext26d_32x4d- 77.6 top-1, 93.6 top-5
      • deep stem (32, 32, 64), avgpool downsample
      • stem/dowsample from bag-of-tricks paper
    • seresnext26t_32x4d- 78.0 top-1, 93.7 top-5
      • deep tiered stem (24, 48, 64), avgpool downsample (a modified 'D' variant)
      • stem sizing mods from Jeremy Howard and fastai devs discussing ResNet architecture experiments

Dec 23, 2019

  • Add RandAugment trained MixNet-XL weights with 80.48 top-1.
  • --dist-bn argument added to train.py, will distribute BN stats between nodes after each train epoch, before eval

Dec 4, 2019

  • Added weights from the first training from scratch of an EfficientNet (B2) with my new RandAugment implementation. Much better than my previous B2 and very close to the official AdvProp ones (80.4 top-1, 95.08 top-5).

Nov 29, 2019

  • Brought EfficientNet and MobileNetV3 up to date with my https://github.com/rwightman/gen-efficientnet-pytorch code. Torchscript and ONNX export compat excluded.
    • AdvProp weights added
    • Official TF MobileNetv3 weights added
  • EfficientNet and MobileNetV3 hook based 'feature extraction' classes added. Will serve as basis for using models as backbones in obj detection/segmentation tasks. Lots more to be done here...
  • HRNet classification models and weights added from https://github.com/HRNet/HRNet-Image-Classification
  • Consistency in global pooling, reset_classifer, and forward_features across models
    • forward_features always returns unpooled feature maps now
  • Reasonable chance I broke something... let me know

Nov 22, 2019

  • Add ImageNet training RandAugment implementation alongside AutoAugment. PyTorch Transform compatible format, using PIL. Currently training two EfficientNet models from scratch with promising results... will update.
  • drop-connect cmd line arg finally added to train.py, no need to hack model fns. Works for efficientnet/mobilenetv3 based models, ignored otherwise.

Introduction

For each competition, personal, or freelance project involving images + Convolution Neural Networks, I build on top of an evolving collection of code and models. This repo contains a (somewhat) cleaned up and paired down iteration of that code. Hopefully it'll be of use to others.

The work of many others is present here. I've tried to make sure all source material is acknowledged:

Models

I've included a few of my favourite models, but this is not an exhaustive collection. You can't do better than Cadene's collection in that regard. Most models do have pretrained weights from their respective sources or original authors.

Use the --model arg to specify model for train, validation, inference scripts. Match the all lowercase creation fn for the model you'd like.

Features

Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others' via PIP:

  • All models have a common default configuration interface and API for
    • accessing/changing the classifier - get_classifier and reset_classifier
    • doing a forward pass on just the features - forward_features
    • these makes it easy to write consistent network wrappers that work with any of the models
  • All models have a consistent pretrained weight loader that adapts last linear if necessary, and from 3 to 1 channel input if desired
  • The train script works in several process/GPU modes:
    • NVIDIA DDP w/ a single GPU per process, multiple processes with APEX present (AMP mixed-precision optional)
    • PyTorch DistributedDataParallel w/ multi-gpu, single process (AMP disabled as it crashes when enabled)
    • PyTorch w/ single GPU single process (AMP optional)
  • A dynamic global pool implementation that allows selecting from average pooling, max pooling, average + max, or concat([average, max]) at model creation. All global pooling is adaptive average by default and compatible with pretrained weights.
  • A 'Test Time Pool' wrapper that can wrap any of the included models and usually provide improved performance doing inference with input images larger than the training size. Idea adapted from original DPN implementation when I ported (https://github.com/cypw/DPNs)
  • Training schedules and techniques that provide competitive results (Cosine LR, Random Erasing, Label Smoothing, etc)
  • Mixup (as in https://arxiv.org/abs/1710.09412) - currently implementing/testing
  • An inference script that dumps output to CSV is provided as an example
  • AutoAugment (https://arxiv.org/abs/1805.09501) and RandAugment (https://arxiv.org/abs/1909.13719) ImageNet configurations modeled after impl for EfficientNet training (https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py)

Results

A CSV file containing an ImageNet-1K validation results summary for all included models with pretrained weights and default configurations is located here

Self-trained Weights

I've leveraged the training scripts in this repository to train a few of the models with missing weights to good levels of performance. These numbers are all for 224x224 training and validation image sizing with the usual 87.5% validation crop.

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling Image Size
mixnet_xl 80.478 (19.522) 94.932 (5.068) 11.90M bicubic 224
efficientnet_b2 80.402 (19.598) 95.076 (4.924) 9.11M bicubic 260
resnext50d_32x4d 79.674 (20.326) 94.868 (5.132) 25.1M bicubic 224
mixnet_l 78.976 (21.024 94.184 (5.816) 7.33M bicubic 224
efficientnet_b1 78.692 (21.308) 94.086 (5.914) 7.79M bicubic 240
resnext50_32x4d 78.512 (21.488) 94.042 (5.958) 25M bicubic 224
resnet50 78.470 (21.530) 94.266 (5.734) 25.6M bicubic 224
seresnext26t_32x4d 77.998 (22.002) 93.708 (6.292) 16.8M bicubic 224
seresnext26d_32x4d 77.602 (22.398) 93.608 (6.392) 16.8M bicubic 224
mixnet_m 77.256 (22.744) 93.418 (6.582) 5.01M bicubic 224
seresnext26_32x4d 77.104 (22.896) 93.316 (6.684) 16.8M bicubic 224
efficientnet_b0 76.912 (23.088) 93.210 (6.790) 5.29M bicubic 224
resnet26d 76.68 (23.32) 93.166 (6.834) 16M bicubic 224
mixnet_s 75.988 (24.012) 92.794 (7.206) 4.13M bicubic 224
mobilenetv3_100 75.634 (24.366) 92.708 (7.292) 5.5M bicubic 224
mnasnet_a1 75.448 (24.552) 92.604 (7.396) 3.89M bicubic 224
resnet26 75.292 (24.708) 92.57 (7.43) 16M bicubic 224
fbnetc_100 75.124 (24.876) 92.386 (7.614) 5.6M bilinear 224
resnet34 75.110 (24.890) 92.284 (7.716) 22M bilinear 224
seresnet34 74.808 (25.192) 92.124 (7.876) 22M bilinear 224
mnasnet_b1 74.658 (25.342) 92.114 (7.886) 4.38M bicubic 224
spnasnet_100 74.084 (25.916) 91.818 (8.182) 4.42M bilinear 224
seresnet18 71.742 (28.258) 90.334 (9.666) 11.8M bicubic 224

Ported Weights

For the models below, the model code and weight porting from Tensorflow or MXNet Gluon to Pytorch was done by myself. There are weights/models ported by others included in this repository, they are not listed below.

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling Image Size
tf_efficientnet_b8_ap *tfp 85.436 (14.564) 97.272 (2.728) 87.4 bicubic 672
tf_efficientnet_b8_ap 85.368 (14.632) 97.294 (2.706) 87.4 bicubic 672
tf_efficientnet_b7_ap *tfp 85.154 (14.846) 97.244 (2.756) 66.35 bicubic 600
tf_efficientnet_b7_ap 85.118 (14.882) 97.252 (2.748) 66.35 bicubic 600
tf_efficientnet_b7 *tfp 84.940 (15.060) 97.214 (2.786) 66.35 bicubic 600
tf_efficientnet_b7 84.932 (15.068) 97.208 (2.792) 66.35 bicubic 600
tf_efficientnet_b6_ap 84.786 (15.214) 97.138 (2.862) 43.04 bicubic 528
tf_efficientnet_b6_ap *tfp 84.760 (15.240) 97.124 (2.876) 43.04 bicubic 528
tf_efficientnet_b5_ap *tfp 84.276 (15.724) 96.932 (3.068) 30.39 bicubic 456
tf_efficientnet_b5_ap 84.254 (15.746) 96.976 (3.024) 30.39 bicubic 456
tf_efficientnet_b6 *tfp 84.140 (15.860) 96.852 (3.148) 43.04 bicubic 528
tf_efficientnet_b6 84.110 (15.890) 96.886 (3.114) 43.04 bicubic 528
tf_efficientnet_b5 *tfp 83.822 (16.178) 96.756 (3.244) 30.39 bicubic 456
tf_efficientnet_b5 83.812 (16.188) 96.748 (3.252) 30.39 bicubic 456
tf_efficientnet_b4_ap *tfp 83.278 (16.722) 96.376 (3.624) 19.34 bicubic 380
tf_efficientnet_b4_ap 83.248 (16.752) 96.388 (3.612) 19.34 bicubic 380
tf_efficientnet_b4 83.022 (16.978) 96.300 (3.700) 19.34 bicubic 380
tf_efficientnet_b4 *tfp 82.948 (17.052) 96.308 (3.692) 19.34 bicubic 380
tf_efficientnet_b3_ap *tfp 81.882 (18.118) 95.662 (4.338) 12.23 bicubic 300
tf_efficientnet_b3_ap 81.828 (18.172) 95.624 (4.376) 12.23 bicubic 300
tf_efficientnet_b3 81.636 (18.364) 95.718 (4.282) 12.23 bicubic 300
tf_efficientnet_b3 *tfp 81.576 (18.424) 95.662 (4.338) 12.23 bicubic 300
gluon_senet154 81.224 (18.776) 95.356 (4.644) 115.09 bicubic 224
gluon_resnet152_v1s 81.012 (18.988) 95.416 (4.584) 60.32 bicubic 224
gluon_seresnext101_32x4d 80.902 (19.098) 95.294 (4.706) 48.96 bicubic 224
gluon_seresnext101_64x4d 80.890 (19.110) 95.304 (4.696) 88.23 bicubic 224
gluon_resnext101_64x4d 80.602 (19.398) 94.994 (5.006) 83.46 bicubic 224
tf_efficientnet_el 80.534 (19.466) 95.190 (4.810) 10.59 bicubic 300
tf_efficientnet_el *tfp 80.476 (19.524) 95.200 (4.800) 10.59 bicubic 300
gluon_resnet152_v1d 80.470 (19.530) 95.206 (4.794) 60.21 bicubic 224
gluon_resnet101_v1d 80.424 (19.576) 95.020 (4.980) 44.57 bicubic 224
tf_efficientnet_b2_ap *tfp 80.420 (19.580) 95.040 (4.960) 9.11 bicubic 260
gluon_resnext101_32x4d 80.334 (19.666) 94.926 (5.074) 44.18 bicubic 224
tf_efficientnet_b2_ap 80.306 (19.694) 95.028 (4.972) 9.11 bicubic 260
gluon_resnet101_v1s 80.300 (19.700) 95.150 (4.850) 44.67 bicubic 224
tf_efficientnet_b2 *tfp 80.188 (19.812) 94.974 (5.026) 9.11 bicubic 260
tf_efficientnet_b2 80.086 (19.914) 94.908 (5.092) 9.11 bicubic 260
gluon_resnet152_v1c 79.916 (20.084) 94.842 (5.158) 60.21 bicubic 224
gluon_seresnext50_32x4d 79.912 (20.088) 94.818 (5.182) 27.56 bicubic 224
gluon_resnet152_v1b 79.692 (20.308) 94.738 (5.262) 60.19 bicubic 224
gluon_xception65 79.604 (20.396) 94.748 (5.252) 39.92 bicubic 299
gluon_resnet101_v1c 79.544 (20.456) 94.586 (5.414) 44.57 bicubic 224
tf_efficientnet_b1_ap *tfp 79.532 (20.468) 94.378 (5.622) 7.79 bicubic 240
tf_efficientnet_cc_b1_8e *tfp 79.464 (20.536) 94.492 (5.508) 39.7 bicubic 240
gluon_resnext50_32x4d 79.356 (20.644) 94.424 (5.576) 25.03 bicubic 224
gluon_resnet101_v1b 79.304 (20.696) 94.524 (5.476) 44.55 bicubic 224
tf_efficientnet_cc_b1_8e 79.298 (20.702) 94.364 (5.636) 39.7 bicubic 240
tf_efficientnet_b1_ap 79.278 (20.722) 94.308 (5.692) 7.79 bicubic 240
tf_efficientnet_b1 *tfp 79.172 (20.828) 94.450 (5.550) 7.79 bicubic 240
gluon_resnet50_v1d 79.074 (20.926) 94.476 (5.524) 25.58 bicubic 224
tf_efficientnet_em *tfp 78.958 (21.042) 94.458 (5.542) 6.90 bicubic 240
tf_mixnet_l *tfp 78.846 (21.154) 94.212 (5.788) 7.33 bilinear 224
tf_efficientnet_b1 78.826 (21.174) 94.198 (5.802) 7.79 bicubic 240
gluon_inception_v3 78.804 (21.196) 94.380 (5.620) 27.16M bicubic 299
tf_mixnet_l 78.770 (21.230) 94.004 (5.996) 7.33 bicubic 224
tf_efficientnet_em 78.742 (21.258) 94.332 (5.668) 6.90 bicubic 240
gluon_resnet50_v1s 78.712 (21.288) 94.242 (5.758) 25.68 bicubic 224
tf_efficientnet_cc_b0_8e *tfp 78.314 (21.686) 93.790 (6.210) 24.0 bicubic 224
gluon_resnet50_v1c 78.010 (21.990) 93.988 (6.012) 25.58 bicubic 224
tf_efficientnet_cc_b0_8e 77.908 (22.092) 93.656 (6.344) 24.0 bicubic 224
tf_inception_v3 77.856 (22.144) 93.644 (6.356) 27.16M bicubic 299
tf_efficientnet_cc_b0_4e *tfp 77.746 (22.254) 93.552 (6.448) 13.3 bicubic 224
tf_efficientnet_es *tfp 77.616 (22.384) 93.750 (6.250) 5.44 bicubic 224
gluon_resnet50_v1b 77.578 (22.422) 93.718 (6.282) 25.56 bicubic 224
adv_inception_v3 77.576 (22.424) 93.724 (6.276) 27.16M bicubic 299
tf_efficientnet_b0_ap *tfp 77.514 (22.486) 93.576 (6.424) 5.29 bicubic 224
tf_efficientnet_cc_b0_4e 77.304 (22.696) 93.332 (6.668) 13.3 bicubic 224
tf_efficientnet_es 77.264 (22.736) 93.600 (6.400) 5.44 bicubic 224
tf_efficientnet_b0 *tfp 77.258 (22.742) 93.478 (6.522) 5.29 bicubic 224
tf_efficientnet_b0_ap 77.084 (22.916) 93.254 (6.746) 5.29 bicubic 224
tf_mixnet_m *tfp 77.072 (22.928) 93.368 (6.632) 5.01 bilinear 224
tf_mixnet_m 76.950 (23.050) 93.156 (6.844) 5.01 bicubic 224
tf_efficientnet_b0 76.848 (23.152) 93.228 (6.772) 5.29 bicubic 224
tf_mixnet_s *tfp 75.800 (24.200) 92.788 (7.212) 4.13 bilinear 224
tf_mobilenetv3_large_100 *tfp 75.768 (24.232) 92.710 (7.290) 5.48 bilinear 224
tf_mixnet_s 75.648 (24.352) 92.636 (7.364) 4.13 bicubic 224
tf_mobilenetv3_large_100 75.516 (24.484) 92.600 (7.400) 5.48 bilinear 224
gluon_resnet34_v1b 74.580 (25.420) 91.988 (8.012) 21.80 bicubic 224
tf_mobilenetv3_large_075 *tfp 73.730 (26.270) 91.616 (8.384) 3.99 bilinear 224
tf_mobilenetv3_large_075 73.442 (26.558) 91.352 (8.648) 3.99 bilinear 224
tf_mobilenetv3_large_minimal_100 *tfp 72.678 (27.322) 90.860 (9.140) 3.92 bilinear 224
tf_mobilenetv3_large_minimal_100 72.244 (27.756) 90.636 (9.364) 3.92 bilinear 224
tf_mobilenetv3_small_100 *tfp 67.918 (32.082) 87.958 (12.042 2.54 bilinear 224
tf_mobilenetv3_small_100 67.918 (32.082) 87.662 (12.338) 2.54 bilinear 224
tf_mobilenetv3_small_075 *tfp 66.142 (33.858) 86.498 (13.502) 2.04 bilinear 224
tf_mobilenetv3_small_075 65.718 (34.282) 86.136 (13.864) 2.04 bilinear 224
tf_mobilenetv3_small_minimal_100 *tfp 63.378 (36.622) 84.802 (15.198) 2.04 bilinear 224
tf_mobilenetv3_small_minimal_100 62.898 (37.102) 84.230 (15.770) 2.04 bilinear 224

Models with *tfp next to them were scored with --tf-preprocessing flag.

The tf_efficientnet, tf_mixnet models require an equivalent for 'SAME' padding as their arch results in asymmetric padding. I've added this in the model creation wrapper, but it does come with a performance penalty.

Sources for original weights:

Training Hyperparameters

EfficientNet-B2 with RandAugment - 80.4 top-1, 95.1 top-5

These params are for dual Titan RTX cards with NVIDIA Apex installed:

./distributed_train.sh 2 /imagenet/ --model efficientnet_b2 -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-connect 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .016

MixNet-XL with RandAugment - 80.5 top-1, 94.9 top-5

This params are for dual Titan RTX cards with NVIDIA Apex installed:

./distributed_train.sh 2 /imagenet/ --model mixnet_xl -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .969 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-connect 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.3 --amp --lr .016 --dist-bn reduce

SE-ResNeXt-26-D and SE-ResNeXt-26-T

These hparams (or similar) work well for a wide range of ResNet architecture, generally a good idea to increase the epoch # as the model size increases... ie approx 180-200 for ResNe(X)t50, and 220+ for larger. Increase batch size and LR proportionally for better GPUs or with AMP enabled. These params were for 2 1080Ti cards:

./distributed_train.sh 2 /imagenet/ --model seresnext26t_32x4d --lr 0.1 --warmup-epochs 5 --epochs 160 --weight-decay 1e-4 --sched cosine --reprob 0.4 --remode pixel -b 112

TODO dig up some more

Usage

Environment

All development and testing has been done in Conda Python 3 environments on Linux x86-64 systems, specifically Python 3.6.x and 3.7.x. Little to no care has been taken to be Python 2.x friendly and I don't plan to support it. If you run into any challenges running on Windows, or other OS, I'm definitely open to looking into those issues so long as it's in a reproducible (read Conda) environment.

PyTorch versions 1.0 and 1.1 have been tested with this code.

I've tried to keep the dependencies minimal, the setup is as per the PyTorch default install instructions for Conda:

conda create -n torch-env
conda activate torch-env
conda install -c pytorch pytorch torchvision cudatoolkit=10.0

Pip

This package can be installed via pip. Currently, the model factory (timm.create_model) is the most useful component to use via a pip install.

Install (after conda env/install):

pip install timm

Use:

>>> import timm
>>> m = timm.create_model('mobilenetv3_100', pretrained=True)
>>> m.eval()

Scripts

A train, validation, inference, and checkpoint cleaning script included in the github root folder. Scripts are not currently packaged in the pip release.

Training

The variety of training args is large and not all combinations of options (or even options) have been fully tested. For the training dataset folder, specify the folder to the base that contains a train and validation folder.

To train an SE-ResNet34 on ImageNet, locally distributed, 4 GPUs, one process per GPU w/ cosine schedule, random-erasing prob of 50% and per-pixel random value:

./distributed_train.sh 4 /data/imagenet --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 -j 4

NOTE: NVIDIA APEX should be installed to run in per-process distributed via DDP or to enable AMP mixed precision with the --amp flag

Validation / Inference

Validation and inference scripts are similar in usage. One outputs metrics on a validation set and the other outputs topk class ids in a csv. Specify the folder containing validation images, not the base as in training script.

To validate with the model's pretrained weights (if they exist):

python validate.py /imagenet/validation/ --model seresnext26_32x4d --pretrained

To run inference from a checkpoint:

python inference.py /imagenet/validation/ --model mobilenetv3_100 --checkpoint ./output/model_best.pth.tar

TODO

A number of additions planned in the future for various projects, incl

  • Do a model performance (speed + accuracy) benchmarking across all models (make runable as script)
  • Add usage examples to comments, good hyper params for training
  • Comments, cleanup and the usual things that get pushed back