You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
7.2 KiB
149 lines
7.2 KiB
import torch
|
|
import os
|
|
|
|
from .inception_v4 import inception_v4
|
|
from .inception_resnet_v2 import inception_resnet_v2
|
|
from .densenet import densenet161, densenet121, densenet169, densenet201
|
|
from .resnet import resnet18, resnet34, resnet50, resnet101, resnet152
|
|
from .fbresnet200 import fbresnet200
|
|
from .dpn import dpn68, dpn68b, dpn92, dpn98, dpn131, dpn107
|
|
from .senet import seresnet18, seresnet34, seresnet50, seresnet101, seresnet152, \
|
|
seresnext26_32x4d, seresnext50_32x4d, seresnext101_32x4d
|
|
from .resnext import resnext50, resnext101, resnext152
|
|
from .xception import xception
|
|
|
|
model_config_dict = {
|
|
'resnet18': {
|
|
'model_name': 'resnet18', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'},
|
|
'resnet34': {
|
|
'model_name': 'resnet34', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'},
|
|
'resnet50': {
|
|
'model_name': 'resnet50', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'},
|
|
'resnet101': {
|
|
'model_name': 'resnet101', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'},
|
|
'resnet152': {
|
|
'model_name': 'resnet152', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'},
|
|
'densenet121': {
|
|
'model_name': 'densenet121', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'},
|
|
'densenet169': {
|
|
'model_name': 'densenet169', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'},
|
|
'densenet201': {
|
|
'model_name': 'densenet201', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'},
|
|
'densenet161': {
|
|
'model_name': 'densenet161', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'},
|
|
'dpn107': {
|
|
'model_name': 'dpn107', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'dpn'},
|
|
'dpn92_extra': {
|
|
'model_name': 'dpn92', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'dpn'},
|
|
'dpn92': {
|
|
'model_name': 'dpn92', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'dpn'},
|
|
'dpn68': {
|
|
'model_name': 'dpn68', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'dpn'},
|
|
'dpn68b': {
|
|
'model_name': 'dpn68b', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'dpn'},
|
|
'dpn68b_extra': {
|
|
'model_name': 'dpn68b', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'dpn'},
|
|
'inception_resnet_v2': {
|
|
'model_name': 'inception_resnet_v2', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'le'},
|
|
'xception': {
|
|
'model_name': 'xception', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'le'},
|
|
}
|
|
|
|
|
|
def create_model(
|
|
model_name='resnet50',
|
|
pretrained=None,
|
|
num_classes=1000,
|
|
checkpoint_path='',
|
|
**kwargs):
|
|
|
|
test_time_pool = kwargs.pop('test_time_pool') if 'test_time_pool' in kwargs else 0
|
|
|
|
if model_name == 'dpn68':
|
|
model = dpn68(
|
|
num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool)
|
|
elif model_name == 'dpn68b':
|
|
model = dpn68b(
|
|
num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool)
|
|
elif model_name == 'dpn92':
|
|
model = dpn92(
|
|
num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool)
|
|
elif model_name == 'dpn98':
|
|
model = dpn98(
|
|
num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool)
|
|
elif model_name == 'dpn131':
|
|
model = dpn131(
|
|
num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool)
|
|
elif model_name == 'dpn107':
|
|
model = dpn107(
|
|
num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool)
|
|
elif model_name == 'resnet18':
|
|
model = resnet18(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'resnet34':
|
|
model = resnet34(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'resnet50':
|
|
model = resnet50(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'resnet101':
|
|
model = resnet101(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'resnet152':
|
|
model = resnet152(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'densenet121':
|
|
model = densenet121(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'densenet161':
|
|
model = densenet161(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'densenet169':
|
|
model = densenet169(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'densenet201':
|
|
model = densenet201(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'inception_resnet_v2':
|
|
model = inception_resnet_v2(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'inception_v4':
|
|
model = inception_v4(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'fbresnet200':
|
|
model = fbresnet200(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'seresnet18':
|
|
model = seresnet18(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'seresnet34':
|
|
model = seresnet34(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'seresnet50':
|
|
model = seresnet50(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'seresnet101':
|
|
model = seresnet101(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'seresnet152':
|
|
model = seresnet152(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'seresnext26_32x4d':
|
|
model = seresnext26_32x4d(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'seresnext50_32x4d':
|
|
model = seresnext50_32x4d(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'seresnext101_32x4d':
|
|
model = seresnext101_32x4d(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'resnext50':
|
|
model = resnext50(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'resnext101':
|
|
model = resnext101(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'resnext152':
|
|
model = resnext152(num_classes=num_classes, pretrained=pretrained, **kwargs)
|
|
elif model_name == 'xception':
|
|
model = xception(num_classes=num_classes, pretrained=pretrained)
|
|
else:
|
|
assert False and "Invalid model"
|
|
|
|
if checkpoint_path and not pretrained:
|
|
print(checkpoint_path)
|
|
load_checkpoint(model, checkpoint_path)
|
|
|
|
return model
|
|
|
|
|
|
def load_checkpoint(model, checkpoint_path):
|
|
if checkpoint_path is not None and os.path.isfile(checkpoint_path):
|
|
print('Loading checkpoint', checkpoint_path)
|
|
checkpoint = torch.load(checkpoint_path)
|
|
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
|
|
model.load_state_dict(checkpoint['state_dict'])
|
|
else:
|
|
model.load_state_dict(checkpoint)
|
|
else:
|
|
print("Error: No checkpoint found at %s." % checkpoint_path)
|
|
|