You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
477 lines
16 KiB
477 lines
16 KiB
""" Pyramid Vision Transformer v2
|
|
|
|
@misc{wang2021pvtv2,
|
|
title={PVTv2: Improved Baselines with Pyramid Vision Transformer},
|
|
author={Wenhai Wang and Enze Xie and Xiang Li and Deng-Ping Fan and Kaitao Song and Ding Liang and
|
|
Tong Lu and Ping Luo and Ling Shao},
|
|
year={2021},
|
|
eprint={2106.13797},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CV}
|
|
}
|
|
|
|
Based on Apache 2.0 licensed code at https://github.com/whai362/PVT
|
|
|
|
Modifications and timm support by / Copyright 2022, Ross Wightman
|
|
"""
|
|
|
|
import math
|
|
from functools import partial
|
|
from typing import Tuple, List, Callable, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.utils.checkpoint as checkpoint
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
from .helpers import build_model_with_cfg
|
|
from .layers import DropPath, to_2tuple, to_ntuple, trunc_normal_
|
|
from .registry import register_model
|
|
|
|
__all__ = ['PyramidVisionTransformerV2']
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
'crop_pct': 0.9, 'interpolation': 'bicubic',
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
'first_conv': 'patch_embed.proj', 'classifier': 'head', 'fixed_input_size': False,
|
|
**kwargs
|
|
}
|
|
|
|
|
|
default_cfgs = {
|
|
'pvt_v2_b0': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b0.pth'),
|
|
'pvt_v2_b1': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b1.pth'),
|
|
'pvt_v2_b2': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth'),
|
|
'pvt_v2_b3': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b3.pth'),
|
|
'pvt_v2_b4': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b4.pth'),
|
|
'pvt_v2_b5': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b5.pth'),
|
|
'pvt_v2_b2_li': _cfg(url='https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2_li.pth')
|
|
}
|
|
|
|
|
|
class MlpWithDepthwiseConv(nn.Module):
|
|
def __init__(
|
|
self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
|
|
drop=0., extra_relu=False):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
self.relu = nn.ReLU() if extra_relu else nn.Identity()
|
|
self.dwconv = nn.Conv2d(hidden_features, hidden_features, 3, 1, 1, bias=True, groups=hidden_features)
|
|
self.act = act_layer()
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
def forward(self, x, feat_size: List[int]):
|
|
x = self.fc1(x)
|
|
B, N, C = x.shape
|
|
x = x.transpose(1, 2).view(B, C, feat_size[0], feat_size[1])
|
|
x = self.relu(x)
|
|
x = self.dwconv(x)
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x = self.act(x)
|
|
x = self.drop(x)
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads=8,
|
|
sr_ratio=1,
|
|
linear_attn=False,
|
|
qkv_bias=True,
|
|
attn_drop=0.,
|
|
proj_drop=0.
|
|
):
|
|
super().__init__()
|
|
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
|
|
|
self.dim = dim
|
|
self.num_heads = num_heads
|
|
self.head_dim = dim // num_heads
|
|
self.scale = self.head_dim ** -0.5
|
|
|
|
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
|
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
if not linear_attn:
|
|
self.pool = None
|
|
if sr_ratio > 1:
|
|
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
|
self.norm = nn.LayerNorm(dim)
|
|
else:
|
|
self.sr = None
|
|
self.norm = None
|
|
self.act = None
|
|
else:
|
|
self.pool = nn.AdaptiveAvgPool2d(7)
|
|
self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1)
|
|
self.norm = nn.LayerNorm(dim)
|
|
self.act = nn.GELU()
|
|
|
|
def forward(self, x, feat_size: List[int]):
|
|
B, N, C = x.shape
|
|
H, W = feat_size
|
|
q = self.q(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
|
|
|
if self.pool is not None:
|
|
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
|
x_ = self.sr(self.pool(x_)).reshape(B, C, -1).permute(0, 2, 1)
|
|
x_ = self.norm(x_)
|
|
x_ = self.act(x_)
|
|
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
|
else:
|
|
if self.sr is not None:
|
|
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
|
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
|
x_ = self.norm(x_)
|
|
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
|
else:
|
|
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
|
k, v = kv.unbind(0)
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class Block(nn.Module):
|
|
|
|
def __init__(
|
|
self, dim, num_heads, mlp_ratio=4., sr_ratio=1, linear_attn=False, qkv_bias=False,
|
|
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention(
|
|
dim,
|
|
num_heads=num_heads,
|
|
sr_ratio=sr_ratio,
|
|
linear_attn=linear_attn,
|
|
qkv_bias=qkv_bias,
|
|
attn_drop=attn_drop,
|
|
proj_drop=drop,
|
|
)
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
self.mlp = MlpWithDepthwiseConv(
|
|
in_features=dim,
|
|
hidden_features=int(dim * mlp_ratio),
|
|
act_layer=act_layer,
|
|
drop=drop,
|
|
extra_relu=linear_attn
|
|
)
|
|
|
|
def forward(self, x, feat_size: List[int]):
|
|
x = x + self.drop_path(self.attn(self.norm1(x), feat_size))
|
|
x = x + self.drop_path(self.mlp(self.norm2(x), feat_size))
|
|
|
|
return x
|
|
|
|
|
|
class OverlapPatchEmbed(nn.Module):
|
|
""" Image to Patch Embedding
|
|
"""
|
|
def __init__(self, patch_size=7, stride=4, in_chans=3, embed_dim=768):
|
|
super().__init__()
|
|
patch_size = to_2tuple(patch_size)
|
|
assert max(patch_size) > stride, "Set larger patch_size than stride"
|
|
self.patch_size = patch_size
|
|
self.proj = nn.Conv2d(
|
|
in_chans, embed_dim, kernel_size=patch_size, stride=stride,
|
|
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
|
self.norm = nn.LayerNorm(embed_dim)
|
|
|
|
def forward(self, x):
|
|
x = self.proj(x)
|
|
feat_size = x.shape[-2:]
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x = self.norm(x)
|
|
return x, feat_size
|
|
|
|
|
|
class PyramidVisionTransformerStage(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
dim_out: int,
|
|
depth: int,
|
|
downsample: bool = True,
|
|
num_heads: int = 8,
|
|
sr_ratio: int = 1,
|
|
linear_attn: bool = False,
|
|
mlp_ratio: float = 4.0,
|
|
qkv_bias: bool = True,
|
|
drop: float = 0.,
|
|
attn_drop: float = 0.,
|
|
drop_path: Union[List[float], float] = 0.0,
|
|
norm_layer: Callable = nn.LayerNorm,
|
|
):
|
|
super().__init__()
|
|
self.grad_checkpointing = False
|
|
|
|
if downsample:
|
|
self.downsample = OverlapPatchEmbed(
|
|
patch_size=3,
|
|
stride=2,
|
|
in_chans=dim,
|
|
embed_dim=dim_out)
|
|
else:
|
|
assert dim == dim_out
|
|
self.downsample = None
|
|
|
|
self.blocks = nn.ModuleList([Block(
|
|
dim=dim_out,
|
|
num_heads=num_heads,
|
|
sr_ratio=sr_ratio,
|
|
linear_attn=linear_attn,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
drop=drop,
|
|
attn_drop=attn_drop,
|
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
|
norm_layer=norm_layer,
|
|
) for i in range(depth)])
|
|
|
|
self.norm = norm_layer(dim_out)
|
|
|
|
def forward(self, x, feat_size: List[int]) -> Tuple[torch.Tensor, List[int]]:
|
|
if self.downsample is not None:
|
|
x, feat_size = self.downsample(x)
|
|
for blk in self.blocks:
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
x = checkpoint.checkpoint(blk, x, feat_size)
|
|
else:
|
|
x = blk(x, feat_size)
|
|
x = self.norm(x)
|
|
x = x.reshape(x.shape[0], feat_size[0], feat_size[1], -1).permute(0, 3, 1, 2).contiguous()
|
|
return x, feat_size
|
|
|
|
|
|
class PyramidVisionTransformerV2(nn.Module):
|
|
def __init__(
|
|
self,
|
|
img_size=None,
|
|
in_chans=3,
|
|
num_classes=1000,
|
|
global_pool='avg',
|
|
depths=(3, 4, 6, 3),
|
|
embed_dims=(64, 128, 256, 512),
|
|
num_heads=(1, 2, 4, 8),
|
|
sr_ratios=(8, 4, 2, 1),
|
|
mlp_ratios=(8., 8., 4., 4.),
|
|
qkv_bias=True,
|
|
linear=False,
|
|
drop_rate=0.,
|
|
attn_drop_rate=0.,
|
|
drop_path_rate=0.,
|
|
norm_layer=nn.LayerNorm,
|
|
):
|
|
super().__init__()
|
|
self.num_classes = num_classes
|
|
assert global_pool in ('avg', '')
|
|
self.global_pool = global_pool
|
|
self.depths = depths
|
|
num_stages = len(depths)
|
|
mlp_ratios = to_ntuple(num_stages)(mlp_ratios)
|
|
num_heads = to_ntuple(num_stages)(num_heads)
|
|
sr_ratios = to_ntuple(num_stages)(sr_ratios)
|
|
assert(len(embed_dims)) == num_stages
|
|
|
|
self.patch_embed = OverlapPatchEmbed(
|
|
patch_size=7,
|
|
stride=4,
|
|
in_chans=in_chans,
|
|
embed_dim=embed_dims[0])
|
|
|
|
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
|
cur = 0
|
|
prev_dim = embed_dims[0]
|
|
self.stages = nn.ModuleList()
|
|
for i in range(num_stages):
|
|
self.stages.append(PyramidVisionTransformerStage(
|
|
dim=prev_dim,
|
|
dim_out=embed_dims[i],
|
|
depth=depths[i],
|
|
downsample=i > 0,
|
|
num_heads=num_heads[i],
|
|
sr_ratio=sr_ratios[i],
|
|
mlp_ratio=mlp_ratios[i],
|
|
linear_attn=linear,
|
|
qkv_bias=qkv_bias,
|
|
drop=drop_rate,
|
|
attn_drop=attn_drop_rate,
|
|
drop_path=dpr[i],
|
|
norm_layer=norm_layer
|
|
))
|
|
prev_dim = embed_dims[i]
|
|
cur += depths[i]
|
|
|
|
# classification head
|
|
self.num_features = embed_dims[-1]
|
|
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.Conv2d):
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
fan_out //= m.groups
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
|
|
def freeze_patch_emb(self):
|
|
self.patch_embed.requires_grad = False
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {}
|
|
|
|
@torch.jit.ignore
|
|
def group_matcher(self, coarse=False):
|
|
matcher = dict(
|
|
stem=r'^patch_embed', # stem and embed
|
|
blocks=r'^stages\.(\d+)'
|
|
)
|
|
return matcher
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable=True):
|
|
for s in self.stages:
|
|
s.grad_checkpointing = enable
|
|
|
|
def get_classifier(self):
|
|
return self.head
|
|
|
|
def reset_classifier(self, num_classes, global_pool=None):
|
|
self.num_classes = num_classes
|
|
if global_pool is not None:
|
|
assert global_pool in ('avg', '')
|
|
self.global_pool = global_pool
|
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
def forward_features(self, x):
|
|
x, feat_size = self.patch_embed(x)
|
|
for stage in self.stages:
|
|
x, feat_size = stage(x, feat_size=feat_size)
|
|
return x
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
if self.global_pool:
|
|
x = x.mean(dim=(-1, -2))
|
|
return x if pre_logits else self.head(x)
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x
|
|
|
|
|
|
def _checkpoint_filter_fn(state_dict, model):
|
|
""" Remap original checkpoints -> timm """
|
|
if 'patch_embed.proj.weight' in state_dict:
|
|
return state_dict # non-original checkpoint, no remapping needed
|
|
|
|
out_dict = {}
|
|
import re
|
|
for k, v in state_dict.items():
|
|
if k.startswith('patch_embed'):
|
|
k = k.replace('patch_embed1', 'patch_embed')
|
|
k = k.replace('patch_embed2', 'stages.1.downsample')
|
|
k = k.replace('patch_embed3', 'stages.2.downsample')
|
|
k = k.replace('patch_embed4', 'stages.3.downsample')
|
|
k = k.replace('dwconv.dwconv', 'dwconv')
|
|
k = re.sub(r'block(\d+).(\d+)', lambda x: f'stages.{int(x.group(1)) - 1}.blocks.{x.group(2)}', k)
|
|
k = re.sub(r'^norm(\d+)', lambda x: f'stages.{int(x.group(1)) - 1}.norm', k)
|
|
out_dict[k] = v
|
|
return out_dict
|
|
|
|
|
|
def _create_pvt2(variant, pretrained=False, **kwargs):
|
|
if kwargs.get('features_only', None):
|
|
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
|
model = build_model_with_cfg(
|
|
PyramidVisionTransformerV2, variant, pretrained,
|
|
pretrained_filter_fn=_checkpoint_filter_fn,
|
|
**kwargs
|
|
)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def pvt_v2_b0(pretrained=False, **kwargs):
|
|
model_kwargs = dict(
|
|
depths=(2, 2, 2, 2), embed_dims=(32, 64, 160, 256), num_heads=(1, 2, 5, 8),
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
return _create_pvt2('pvt_v2_b0', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def pvt_v2_b1(pretrained=False, **kwargs):
|
|
model_kwargs = dict(
|
|
depths=(2, 2, 2, 2), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8),
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
return _create_pvt2('pvt_v2_b1', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def pvt_v2_b2(pretrained=False, **kwargs):
|
|
model_kwargs = dict(
|
|
depths=(3, 4, 6, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8),
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
return _create_pvt2('pvt_v2_b2', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def pvt_v2_b3(pretrained=False, **kwargs):
|
|
model_kwargs = dict(
|
|
depths=(3, 4, 18, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8),
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
return _create_pvt2('pvt_v2_b3', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def pvt_v2_b4(pretrained=False, **kwargs):
|
|
model_kwargs = dict(
|
|
depths=(3, 8, 27, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8),
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
return _create_pvt2('pvt_v2_b4', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def pvt_v2_b5(pretrained=False, **kwargs):
|
|
model_kwargs = dict(
|
|
depths=(3, 6, 40, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8),
|
|
mlp_ratios=(4, 4, 4, 4), norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
**kwargs)
|
|
return _create_pvt2('pvt_v2_b5', pretrained=pretrained, **model_kwargs)
|
|
|
|
|
|
@register_model
|
|
def pvt_v2_b2_li(pretrained=False, **kwargs):
|
|
model_kwargs = dict(
|
|
depths=(3, 4, 6, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8),
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), linear=True, **kwargs)
|
|
return _create_pvt2('pvt_v2_b2_li', pretrained=pretrained, **model_kwargs)
|
|
|