You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/models/pretrained.py

123 lines
3.9 KiB

import copy
from collections import deque, defaultdict
from dataclasses import dataclass, field, replace, asdict
from typing import Any, Deque, Dict, Tuple, Optional, Union
@dataclass
class PretrainedCfg:
"""
"""
# weight locations
url: Optional[Union[str, Tuple[str, str]]] = None
file: Optional[str] = None
hf_hub_id: Optional[str] = None
hf_hub_filename: Optional[str] = None
source: Optional[str] = None # source of cfg / weight location used (url, file, hf-hub)
architecture: Optional[str] = None # architecture variant can be set when not implicit
custom_load: bool = False # use custom model specific model.load_pretrained() (ie for npz files)
# input / data config
input_size: Tuple[int, int, int] = (3, 224, 224)
test_input_size: Optional[Tuple[int, int, int]] = None
min_input_size: Optional[Tuple[int, int, int]] = None
fixed_input_size: bool = False
interpolation: str = 'bicubic'
crop_pct: float = 0.875
test_crop_pct: Optional[float] = None
crop_mode: str = 'center'
mean: Tuple[float, ...] = (0.485, 0.456, 0.406)
std: Tuple[float, ...] = (0.229, 0.224, 0.225)
# head config
num_classes: int = 1000
label_offset: Optional[int] = None
# model attributes that vary with above or required for pretrained adaptation
pool_size: Optional[Tuple[int, ...]] = None
test_pool_size: Optional[Tuple[int, ...]] = None
first_conv: Optional[str] = None
classifier: Optional[str] = None
license: Optional[str] = None
source_url: Optional[str] = None
paper: Optional[str] = None
notes: Optional[str] = None
@property
def has_weights(self):
return self.url or self.file or self.hf_hub_id
def to_dict(self, remove_source=False, remove_null=True):
return filter_pretrained_cfg(
asdict(self),
remove_source=remove_source,
remove_null=remove_null
)
def filter_pretrained_cfg(cfg, remove_source=False, remove_null=True):
filtered_cfg = {}
for k, v in cfg.items():
if remove_source and k in {'url', 'file', 'hf_hub_id', 'hf_hub_id', 'hf_hub_filename', 'source'}:
continue
if remove_null and v is None:
continue
filtered_cfg[k] = v
return filtered_cfg
@dataclass
class DefaultCfg:
tags: Deque[str] = field(default_factory=deque) # priority queue of tags (first is default)
cfgs: Dict[str, PretrainedCfg] = field(default_factory=dict) # pretrained cfgs by tag
is_pretrained: bool = False # at least one of the configs has a pretrained source set
@property
def default(self):
return self.cfgs[self.tags[0]]
@property
def default_with_tag(self):
tag = self.tags[0]
return tag, self.cfgs[tag]
def split_model_name_tag(model_name: str, no_tag=''):
model_name, *tag_list = model_name.split('.', 1)
tag = tag_list[0] if tag_list else no_tag
return model_name, tag
def generate_default_cfgs(cfgs: Dict[str, Union[Dict[str, Any], PretrainedCfg]]):
out = defaultdict(DefaultCfg)
default_set = set() # no tag and tags ending with * are prioritized as default
for k, v in cfgs.items():
if isinstance(v, dict):
v = PretrainedCfg(**v)
has_weights = v.has_weights
model, tag = split_model_name_tag(k)
is_default_set = model in default_set
priority = (has_weights and not tag) or (tag.endswith('*') and not is_default_set)
tag = tag.strip('*')
default_cfg = out[model]
if priority:
default_cfg.tags.appendleft(tag)
default_set.add(model)
elif has_weights and not default_cfg.is_pretrained:
default_cfg.tags.appendleft(tag)
else:
default_cfg.tags.append(tag)
if has_weights:
default_cfg.is_pretrained = True
default_cfg.cfgs[tag] = v
return out