You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
362 lines
14 KiB
362 lines
14 KiB
from collections import OrderedDict
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch._six import container_abcs
|
|
from itertools import repeat
|
|
from functools import partial
|
|
import numpy as np
|
|
import math
|
|
|
|
|
|
# Tuple helpers ripped from PyTorch
|
|
def _ntuple(n):
|
|
def parse(x):
|
|
if isinstance(x, container_abcs.Iterable):
|
|
return x
|
|
return tuple(repeat(x, n))
|
|
return parse
|
|
|
|
|
|
_single = _ntuple(1)
|
|
_pair = _ntuple(2)
|
|
_triple = _ntuple(3)
|
|
_quadruple = _ntuple(4)
|
|
|
|
|
|
def _is_static_pad(kernel_size, stride=1, dilation=1, **_):
|
|
return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0
|
|
|
|
|
|
def _get_padding(kernel_size, stride=1, dilation=1, **_):
|
|
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
|
|
return padding
|
|
|
|
|
|
def _calc_same_pad(i, k, s, d):
|
|
return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0)
|
|
|
|
|
|
def _split_channels(num_chan, num_groups):
|
|
split = [num_chan // num_groups for _ in range(num_groups)]
|
|
split[0] += num_chan - sum(split)
|
|
return split
|
|
|
|
|
|
# pylint: disable=unused-argument
|
|
def conv2d_same(x, weight, bias=None, stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1):
|
|
ih, iw = x.size()[-2:]
|
|
kh, kw = weight.size()[-2:]
|
|
pad_h = _calc_same_pad(ih, kh, stride[0], dilation[0])
|
|
pad_w = _calc_same_pad(iw, kw, stride[1], dilation[1])
|
|
if pad_h > 0 or pad_w > 0:
|
|
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
|
|
return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups)
|
|
|
|
|
|
class Conv2dSame(nn.Conv2d):
|
|
""" Tensorflow like 'SAME' convolution wrapper for 2D convolutions
|
|
"""
|
|
|
|
# pylint: disable=unused-argument
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
|
padding=0, dilation=1, groups=1, bias=True):
|
|
super(Conv2dSame, self).__init__(
|
|
in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
|
|
|
|
def forward(self, x):
|
|
return conv2d_same(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
|
|
|
|
|
|
def get_padding_value(padding, kernel_size, **kwargs):
|
|
dynamic = False
|
|
if isinstance(padding, str):
|
|
# for any string padding, the padding will be calculated for you, one of three ways
|
|
padding = padding.lower()
|
|
if padding == 'same':
|
|
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
|
|
if _is_static_pad(kernel_size, **kwargs):
|
|
# static case, no extra overhead
|
|
padding = _get_padding(kernel_size, **kwargs)
|
|
else:
|
|
# dynamic 'SAME' padding, has runtime/GPU memory overhead
|
|
padding = 0
|
|
dynamic = True
|
|
elif padding == 'valid':
|
|
# 'VALID' padding, same as padding=0
|
|
padding = 0
|
|
else:
|
|
# Default to PyTorch style 'same'-ish symmetric padding
|
|
padding = _get_padding(kernel_size, **kwargs)
|
|
return padding, dynamic
|
|
|
|
|
|
def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs):
|
|
padding = kwargs.pop('padding', '')
|
|
kwargs.setdefault('bias', False)
|
|
padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs)
|
|
if is_dynamic:
|
|
return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs)
|
|
else:
|
|
return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs)
|
|
|
|
|
|
class MixedConv2d(nn.ModuleDict):
|
|
""" Mixed Grouped Convolution
|
|
Based on MDConv and GroupedConv in MixNet impl:
|
|
https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mixnet/custom_layers.py
|
|
"""
|
|
def __init__(self, in_channels, out_channels, kernel_size=3,
|
|
stride=1, padding='', dilation=1, depthwise=False, **kwargs):
|
|
super(MixedConv2d, self).__init__()
|
|
|
|
kernel_size = kernel_size if isinstance(kernel_size, list) else [kernel_size]
|
|
num_groups = len(kernel_size)
|
|
in_splits = _split_channels(in_channels, num_groups)
|
|
out_splits = _split_channels(out_channels, num_groups)
|
|
self.in_channels = sum(in_splits)
|
|
self.out_channels = sum(out_splits)
|
|
for idx, (k, in_ch, out_ch) in enumerate(zip(kernel_size, in_splits, out_splits)):
|
|
conv_groups = out_ch if depthwise else 1
|
|
# use add_module to keep key space clean
|
|
self.add_module(
|
|
str(idx),
|
|
create_conv2d_pad(
|
|
in_ch, out_ch, k, stride=stride,
|
|
padding=padding, dilation=dilation, groups=conv_groups, **kwargs)
|
|
)
|
|
self.splits = in_splits
|
|
|
|
def forward(self, x):
|
|
x_split = torch.split(x, self.splits, 1)
|
|
x_out = [c(x_split[i]) for i, c in enumerate(self.values())]
|
|
x = torch.cat(x_out, 1)
|
|
return x
|
|
|
|
|
|
def get_condconv_initializer(initializer, num_experts, expert_shape):
|
|
def condconv_initializer(weight):
|
|
"""CondConv initializer function."""
|
|
num_params = np.prod(expert_shape)
|
|
if (len(weight.shape) != 2 or weight.shape[0] != num_experts or
|
|
weight.shape[1] != num_params):
|
|
raise (ValueError(
|
|
'CondConv variables must have shape [num_experts, num_params]'))
|
|
for i in range(num_experts):
|
|
initializer(weight[i].view(expert_shape))
|
|
return condconv_initializer
|
|
|
|
|
|
class CondConv2d(nn.Module):
|
|
""" Conditional Convolution
|
|
Inspired by: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/condconv/condconv_layers.py
|
|
|
|
Grouped convolution hackery for parallel execution of the per-sample kernel filters inspired by this discussion:
|
|
https://github.com/pytorch/pytorch/issues/17983
|
|
"""
|
|
__constants__ = ['bias', 'in_channels', 'out_channels', 'dynamic_padding']
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size=3,
|
|
stride=1, padding='', dilation=1, groups=1, bias=False, num_experts=4):
|
|
super(CondConv2d, self).__init__()
|
|
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.kernel_size = _pair(kernel_size)
|
|
self.stride = _pair(stride)
|
|
padding_val, is_padding_dynamic = get_padding_value(
|
|
padding, kernel_size, stride=stride, dilation=dilation)
|
|
self.dynamic_padding = is_padding_dynamic # if in forward to work with torchscript
|
|
self.padding = _pair(padding_val)
|
|
self.dilation = _pair(dilation)
|
|
self.groups = groups
|
|
self.num_experts = num_experts
|
|
|
|
self.weight_shape = (self.out_channels, self.in_channels // self.groups) + self.kernel_size
|
|
weight_num_param = 1
|
|
for wd in self.weight_shape:
|
|
weight_num_param *= wd
|
|
self.weight = torch.nn.Parameter(torch.Tensor(self.num_experts, weight_num_param))
|
|
|
|
if bias:
|
|
self.bias_shape = (self.out_channels,)
|
|
self.bias = torch.nn.Parameter(torch.Tensor(self.num_experts, self.out_channels))
|
|
else:
|
|
self.register_parameter('bias', None)
|
|
|
|
self.reset_parameters()
|
|
|
|
def reset_parameters(self):
|
|
init_weight = get_condconv_initializer(
|
|
partial(nn.init.kaiming_uniform_, a=math.sqrt(5)), self.num_experts, self.weight_shape)
|
|
init_weight(self.weight)
|
|
if self.bias is not None:
|
|
fan_in = np.prod(self.weight_shape[1:])
|
|
bound = 1 / math.sqrt(fan_in)
|
|
init_bias = get_condconv_initializer(
|
|
partial(nn.init.uniform_, a=-bound, b=bound), self.num_experts, self.bias_shape)
|
|
init_bias(self.bias)
|
|
|
|
def forward(self, x, routing_weights):
|
|
B, C, H, W = x.shape
|
|
weight = torch.matmul(routing_weights, self.weight)
|
|
new_weight_shape = (B * self.out_channels, self.in_channels // self.groups) + self.kernel_size
|
|
weight = weight.view(new_weight_shape)
|
|
bias = None
|
|
if self.bias is not None:
|
|
bias = torch.matmul(routing_weights, self.bias)
|
|
bias = bias.view(B * self.out_channels)
|
|
# move batch elements with channels so each batch element can be efficiently convolved with separate kernel
|
|
x = x.view(1, B * C, H, W)
|
|
if self.dynamic_padding:
|
|
out = conv2d_same(
|
|
x, weight, bias, stride=self.stride, padding=self.padding,
|
|
dilation=self.dilation, groups=self.groups * B)
|
|
else:
|
|
out = F.conv2d(
|
|
x, weight, bias, stride=self.stride, padding=self.padding,
|
|
dilation=self.dilation, groups=self.groups * B)
|
|
out = out.permute([1, 0, 2, 3]).view(B, self.out_channels, out.shape[-2], out.shape[-1])
|
|
|
|
# Literal port (from TF definition)
|
|
# x = torch.split(x, 1, 0)
|
|
# weight = torch.split(weight, 1, 0)
|
|
# if self.bias is not None:
|
|
# bias = torch.matmul(routing_weights, self.bias)
|
|
# bias = torch.split(bias, 1, 0)
|
|
# else:
|
|
# bias = [None] * B
|
|
# out = []
|
|
# for xi, wi, bi in zip(x, weight, bias):
|
|
# wi = wi.view(*self.weight_shape)
|
|
# if bi is not None:
|
|
# bi = bi.view(*self.bias_shape)
|
|
# out.append(self.conv_fn(
|
|
# xi, wi, bi, stride=self.stride, padding=self.padding,
|
|
# dilation=self.dilation, groups=self.groups))
|
|
# out = torch.cat(out, 0)
|
|
return out
|
|
|
|
|
|
class SelectiveKernelAttn(nn.Module):
|
|
def __init__(self, channels, num_paths=2, attn_channels=32,
|
|
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
|
|
super(SelectiveKernelAttn, self).__init__()
|
|
self.num_paths = num_paths
|
|
self.pool = nn.AdaptiveAvgPool2d(1)
|
|
self.fc_reduce = nn.Conv2d(channels, attn_channels, kernel_size=1, bias=False)
|
|
self.bn = norm_layer(attn_channels)
|
|
self.act = act_layer(inplace=True)
|
|
self.fc_select = nn.Conv2d(attn_channels, channels * num_paths, kernel_size=1, bias=False)
|
|
|
|
def forward(self, x):
|
|
assert x.shape[1] == self.num_paths
|
|
x = torch.sum(x, dim=1)
|
|
x = self.pool(x)
|
|
x = self.fc_reduce(x)
|
|
x = self.bn(x)
|
|
x = self.act(x)
|
|
x = self.fc_select(x)
|
|
B, C, H, W = x.shape
|
|
x = x.view(B, self.num_paths, C // self.num_paths, H, W)
|
|
x = torch.softmax(x, dim=1)
|
|
return x
|
|
|
|
|
|
def _kernel_valid(k):
|
|
if isinstance(k, (list, tuple)):
|
|
for ki in k:
|
|
return _kernel_valid(ki)
|
|
assert k >= 3 and k % 2
|
|
|
|
|
|
class ConvBnAct(nn.Module):
|
|
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, dilation=1, groups=1,
|
|
drop_block=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
|
|
super(ConvBnAct, self).__init__()
|
|
padding = _get_padding(kernel_size, stride, dilation) # assuming PyTorch style padding for this block
|
|
self.conv = nn.Conv2d(
|
|
in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
|
|
padding=padding, dilation=dilation, groups=groups, bias=False)
|
|
self.bn = norm_layer(out_channels)
|
|
self.drop_block = drop_block
|
|
if act_layer is not None:
|
|
self.act = act_layer(inplace=True)
|
|
else:
|
|
self.act = None
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
if self.drop_block is not None:
|
|
x = self.drop_block(x)
|
|
if self.act is not None:
|
|
x = self.act(x)
|
|
return x
|
|
|
|
|
|
class SelectiveKernelConv(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size=None, stride=1, dilation=1, groups=1,
|
|
attn_reduction=16, min_attn_channels=32, keep_3x3=True, split_input=False,
|
|
drop_block=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
|
|
super(SelectiveKernelConv, self).__init__()
|
|
kernel_size = kernel_size or [3, 5]
|
|
_kernel_valid(kernel_size)
|
|
if not isinstance(kernel_size, list):
|
|
kernel_size = [kernel_size] * 2
|
|
if keep_3x3:
|
|
dilation = [dilation * (k - 1) // 2 for k in kernel_size]
|
|
kernel_size = [3] * len(kernel_size)
|
|
else:
|
|
dilation = [dilation] * len(kernel_size)
|
|
self.num_paths = len(kernel_size)
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.split_input = split_input
|
|
if self.split_input:
|
|
assert in_channels % self.num_paths == 0
|
|
in_channels = in_channels // self.num_paths
|
|
groups = min(out_channels, groups)
|
|
|
|
conv_kwargs = dict(
|
|
stride=stride, groups=groups, drop_block=drop_block, act_layer=act_layer, norm_layer=norm_layer)
|
|
self.paths = nn.ModuleList([
|
|
ConvBnAct(in_channels, out_channels, kernel_size=k, dilation=d, **conv_kwargs)
|
|
for k, d in zip(kernel_size, dilation)])
|
|
|
|
attn_channels = max(int(out_channels / attn_reduction), min_attn_channels)
|
|
self.attn = SelectiveKernelAttn(out_channels, self.num_paths, attn_channels)
|
|
self.drop_block = drop_block
|
|
|
|
def forward(self, x):
|
|
if self.split_input:
|
|
x_split = torch.split(x, self.in_channels // self.num_paths, 1)
|
|
x_paths = [op(x_split[i]) for i, op in enumerate(self.paths)]
|
|
else:
|
|
x_paths = [op(x) for op in self.paths]
|
|
x = torch.stack(x_paths, dim=1)
|
|
x_attn = self.attn(x)
|
|
x = x * x_attn
|
|
x = torch.sum(x, dim=1)
|
|
return x
|
|
|
|
|
|
# helper method
|
|
def select_conv2d(in_chs, out_chs, kernel_size, **kwargs):
|
|
assert 'groups' not in kwargs # only use 'depthwise' bool arg
|
|
if isinstance(kernel_size, list):
|
|
assert 'num_experts' not in kwargs # MixNet + CondConv combo not supported currently
|
|
# We're going to use only lists for defining the MixedConv2d kernel groups,
|
|
# ints, tuples, other iterables will continue to pass to normal conv and specify h, w.
|
|
m = MixedConv2d(in_chs, out_chs, kernel_size, **kwargs)
|
|
else:
|
|
depthwise = kwargs.pop('depthwise', False)
|
|
groups = out_chs if depthwise else 1
|
|
if 'num_experts' in kwargs and kwargs['num_experts'] > 0:
|
|
m = CondConv2d(in_chs, out_chs, kernel_size, groups=groups, **kwargs)
|
|
else:
|
|
m = create_conv2d_pad(in_chs, out_chs, kernel_size, groups=groups, **kwargs)
|
|
return m
|