You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/bits/updater.py

55 lines
1.6 KiB

from typing import Callable, Optional, Union
import torch
from .grad_clipper import GradClipper
class Updater:
def __init__(
self,
optimizer: torch.optim.Optimizer,
clip_value: Optional[Union[Callable, float]] = None,
clip_mode: str = 'norm'):
self.optimizer = optimizer
self.clipper: Optional[GradClipper] = None
if clip_value is not None:
if isinstance(clip_value, Callable):
self.clipper = clip_value
else:
GradClipper(clip_value, clip_mode)
self.scaler = None
self.create_graph = getattr(self.optimizer, 'second_order', False)
self.num_accumulated = 0
self.after_step_closure = False
def apply(self, loss: torch.Tensor, accumulate=False):
loss.backward(create_graph=self.create_graph)
if self.clipper is not None:
self.clipper()
if not accumulate:
self.optimizer.step()
self.reset()
else:
self.num_accumulated += 1
def reset(self):
self.optimizer.zero_grad()
self.num_accumulated = 0
def state_dict(self):
state_dict = dict(optimizer=self.optimizer.state_dict())
if self.scaler is not None:
state_dict['scaler'] = self.scaler.state_dict()
def load_state_dict(self, state_dict):
if 'optimizer' in state_dict:
self.optimizer.load_state_dict(state_dict['optimizer'])
if 'scaler' in state_dict and self.scaler is not None:
self.scaler.load_state_dict(state_dict['scaler'])