You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
660 lines
23 KiB
660 lines
23 KiB
""" DaViT: Dual Attention Vision Transformers
|
|
|
|
As described in https://arxiv.org/abs/2204.03645
|
|
|
|
Input size invariant transformer architecture that combines channel and spacial
|
|
attention in each block. The attention mechanisms used are linear in complexity.
|
|
|
|
DaViT model defs and weights adapted from https://github.com/dingmyu/davit, original copyright below
|
|
|
|
"""
|
|
# Copyright (c) 2022 Mingyu Ding
|
|
# All rights reserved.
|
|
# This source code is licensed under the MIT license
|
|
|
|
import itertools
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch import Tensor
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
from timm.layers import DropPath, to_2tuple, trunc_normal_, ClassifierHead, Mlp
|
|
from ._builder import build_model_with_cfg
|
|
from ._features import FeatureInfo
|
|
from ._features_fx import register_notrace_function
|
|
from ._manipulate import checkpoint_seq
|
|
from ._pretrained import generate_default_cfgs
|
|
from ._registry import register_model
|
|
|
|
__all__ = ['DaViT']
|
|
|
|
|
|
class ConvPosEnc(nn.Module):
|
|
def __init__(self, dim : int, k : int=3, act : bool=False, normtype : str='none'):
|
|
|
|
super(ConvPosEnc, self).__init__()
|
|
self.proj = nn.Conv2d(dim,
|
|
dim,
|
|
to_2tuple(k),
|
|
to_2tuple(1),
|
|
to_2tuple(k // 2),
|
|
groups=dim)
|
|
self.normtype = normtype
|
|
self.norm = nn.Identity()
|
|
if self.normtype == 'batch':
|
|
self.norm = nn.BatchNorm2d(dim)
|
|
elif self.normtype == 'layer':
|
|
self.norm = nn.LayerNorm(dim)
|
|
self.activation = nn.GELU() if act else nn.Identity()
|
|
|
|
def forward(self, x : Tensor):
|
|
B, C, H, W = x.shape
|
|
|
|
#feat = x.transpose(1, 2).view(B, C, H, W)
|
|
feat = self.proj(x)
|
|
if self.normtype == 'batch':
|
|
feat = self.norm(feat).flatten(2).transpose(1, 2)
|
|
elif self.normtype == 'layer':
|
|
feat = self.norm(feat.flatten(2).transpose(1, 2))
|
|
else:
|
|
feat = feat.flatten(2).transpose(1, 2)
|
|
x = x + self.activation(feat).transpose(1, 2).view(B, C, H, W)
|
|
return x
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
""" Size-agnostic implementation of 2D image to patch embedding,
|
|
allowing input size to be adjusted during model forward operation
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
patch_size=4,
|
|
in_chans=3,
|
|
embed_dim=96,
|
|
overlapped=False):
|
|
super().__init__()
|
|
patch_size = to_2tuple(patch_size)
|
|
self.patch_size = patch_size
|
|
self.in_chans = in_chans
|
|
self.embed_dim = embed_dim
|
|
|
|
if patch_size[0] == 4:
|
|
self.proj = nn.Conv2d(
|
|
in_chans,
|
|
embed_dim,
|
|
kernel_size=(7, 7),
|
|
stride=patch_size,
|
|
padding=(3, 3))
|
|
self.norm = nn.LayerNorm(embed_dim)
|
|
if patch_size[0] == 2:
|
|
kernel = 3 if overlapped else 2
|
|
pad = 1 if overlapped else 0
|
|
self.proj = nn.Conv2d(
|
|
in_chans,
|
|
embed_dim,
|
|
kernel_size=to_2tuple(kernel),
|
|
stride=patch_size,
|
|
padding=to_2tuple(pad))
|
|
self.norm = nn.LayerNorm(in_chans)
|
|
|
|
|
|
def forward(self, x : Tensor):
|
|
B, C, H, W = x.shape
|
|
if self.norm.normalized_shape[0] == self.in_chans:
|
|
x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
|
|
|
x = F.pad(x, (0, (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]))
|
|
x = F.pad(x, (0, 0, 0, (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]))
|
|
|
|
x = self.proj(x)
|
|
|
|
if self.norm.normalized_shape[0] == self.embed_dim:
|
|
x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
|
return x
|
|
|
|
class ChannelAttention(nn.Module):
|
|
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = head_dim ** -0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
def forward(self, x : Tensor):
|
|
B, N, C = x.shape
|
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv[0], qkv[1], qkv[2]
|
|
|
|
k = k * self.scale
|
|
attention = k.transpose(-1, -2) @ v
|
|
attention = attention.softmax(dim=-1)
|
|
x = (attention @ q.transpose(-1, -2)).transpose(-1, -2)
|
|
x = x.transpose(1, 2).reshape(B, N, C)
|
|
x = self.proj(x)
|
|
return x
|
|
|
|
|
|
class ChannelBlock(nn.Module):
|
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False,
|
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
|
ffn=True, cpe_act=False):
|
|
super().__init__()
|
|
|
|
self.cpe1 = ConvPosEnc(dim=dim, k=3, act=cpe_act)
|
|
self.ffn = ffn
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = ChannelAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias)
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
self.cpe2 = ConvPosEnc(dim=dim, k=3, act=cpe_act)
|
|
|
|
if self.ffn:
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer)
|
|
|
|
|
|
def forward(self, x : Tensor):
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
x = self.cpe1(x).flatten(2).transpose(1, 2)
|
|
|
|
cur = self.norm1(x)
|
|
cur = self.attn(cur)
|
|
x = x + self.drop_path(cur)
|
|
|
|
x = self.cpe2(x.transpose(1, 2).view(B, C, H, W)).flatten(2).transpose(1, 2)
|
|
if self.ffn:
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
|
|
x = x.transpose(1, 2).view(B, C, H, W)
|
|
|
|
return x
|
|
|
|
def window_partition(x : Tensor, window_size: int):
|
|
"""
|
|
Args:
|
|
x: (B, H, W, C)
|
|
window_size (int): window size
|
|
Returns:
|
|
windows: (num_windows*B, window_size, window_size, C)
|
|
"""
|
|
B, H, W, C = x.shape
|
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
|
return windows
|
|
|
|
@register_notrace_function # reason: int argument is a Proxy
|
|
def window_reverse(windows : Tensor, window_size: int, H: int, W: int):
|
|
"""
|
|
Args:
|
|
windows: (num_windows*B, window_size, window_size, C)
|
|
window_size (int): Window size
|
|
H (int): Height of image
|
|
W (int): Width of image
|
|
Returns:
|
|
x: (B, H, W, C)
|
|
"""
|
|
|
|
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
|
return x
|
|
|
|
|
|
class WindowAttention(nn.Module):
|
|
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
|
It supports both of shifted and non-shifted window.
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
window_size (tuple[int]): The height and width of the window.
|
|
num_heads (int): Number of attention heads.
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
|
"""
|
|
|
|
def __init__(self, dim, window_size, num_heads, qkv_bias=True):
|
|
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.window_size = window_size
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = head_dim ** -0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
self.softmax = nn.Softmax(dim=-1)
|
|
|
|
def forward(self, x : Tensor):
|
|
B_, N, C = x.shape
|
|
|
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv[0], qkv[1], qkv[2]
|
|
|
|
q = q * self.scale
|
|
attn = (q @ k.transpose(-2, -1))
|
|
attn = self.softmax(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
|
x = self.proj(x)
|
|
return x
|
|
|
|
|
|
class SpatialBlock(nn.Module):
|
|
r""" Windows Block.
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads.
|
|
window_size (int): Window size.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
"""
|
|
|
|
def __init__(self, dim, num_heads, window_size=7,
|
|
mlp_ratio=4., qkv_bias=True, drop_path=0.,
|
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
|
ffn=True, cpe_act=False):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.ffn = ffn
|
|
self.num_heads = num_heads
|
|
self.window_size = window_size
|
|
self.mlp_ratio = mlp_ratio
|
|
|
|
self.cpe1 = ConvPosEnc(dim=dim, k=3, act=cpe_act)
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = WindowAttention(
|
|
dim,
|
|
window_size=to_2tuple(self.window_size),
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias)
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
self.cpe2 = ConvPosEnc(dim=dim, k=3, act=cpe_act)
|
|
|
|
if self.ffn:
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer)
|
|
|
|
|
|
def forward(self, x : Tensor):
|
|
B, C, H, W = x.shape
|
|
|
|
|
|
shortcut = self.cpe1(x).flatten(2).transpose(1, 2)
|
|
x = self.norm1(shortcut)
|
|
x = x.view(B, H, W, C)
|
|
|
|
pad_l = pad_t = 0
|
|
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
|
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
|
_, Hp, Wp, _ = x.shape
|
|
|
|
x_windows = window_partition(x, self.window_size)
|
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
|
|
|
# W-MSA/SW-MSA
|
|
attn_windows = self.attn(x_windows)
|
|
|
|
# merge windows
|
|
attn_windows = attn_windows.view(-1,
|
|
self.window_size,
|
|
self.window_size,
|
|
C)
|
|
x = window_reverse(attn_windows, self.window_size, Hp, Wp)
|
|
|
|
#if pad_r > 0 or pad_b > 0:
|
|
x = x[:, :H, :W, :].contiguous()
|
|
|
|
x = x.view(B, H * W, C)
|
|
x = shortcut + self.drop_path(x)
|
|
|
|
x = self.cpe2(x.transpose(1, 2).view(B, C, H, W)).flatten(2).transpose(1, 2)
|
|
if self.ffn:
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
|
|
x = x.transpose(1, 2).view(B, C, H, W)
|
|
|
|
return x
|
|
|
|
|
|
class DaViTStage(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_chs,
|
|
out_chs,
|
|
depth = 1,
|
|
patch_size = 4,
|
|
overlapped_patch = False,
|
|
attention_types = ('spatial', 'channel'),
|
|
num_heads = 3,
|
|
window_size = 7,
|
|
mlp_ratio = 4,
|
|
qkv_bias = True,
|
|
drop_path_rates = (0, 0),
|
|
norm_layer = nn.LayerNorm,
|
|
ffn = True,
|
|
cpe_act = False
|
|
):
|
|
super().__init__()
|
|
|
|
self.grad_checkpointing = False
|
|
|
|
# patch embedding layer at the beginning of each stage
|
|
self.patch_embed = PatchEmbed(
|
|
patch_size=patch_size,
|
|
in_chans=in_chs,
|
|
embed_dim=out_chs,
|
|
overlapped=overlapped_patch
|
|
)
|
|
'''
|
|
repeating alternating attention blocks in each stage
|
|
default: (spatial -> channel) x depth
|
|
|
|
potential opportunity to integrate with a more general version of ByobNet/ByoaNet
|
|
since the logic is similar
|
|
'''
|
|
stage_blocks = []
|
|
for block_idx in range(depth):
|
|
|
|
dual_attention_block = []
|
|
|
|
for attention_id, attention_type in enumerate(attention_types):
|
|
if attention_type == 'spatial':
|
|
dual_attention_block.append(SpatialBlock(
|
|
dim=out_chs,
|
|
num_heads=num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
drop_path=drop_path_rates[len(attention_types) * block_idx + attention_id],
|
|
norm_layer=norm_layer,
|
|
ffn=ffn,
|
|
cpe_act=cpe_act,
|
|
window_size=window_size,
|
|
))
|
|
elif attention_type == 'channel':
|
|
dual_attention_block.append(ChannelBlock(
|
|
dim=out_chs,
|
|
num_heads=num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
drop_path=drop_path_rates[len(attention_types) * block_idx + attention_id],
|
|
norm_layer=norm_layer,
|
|
ffn=ffn,
|
|
cpe_act=cpe_act
|
|
))
|
|
|
|
stage_blocks.append(nn.Sequential(*dual_attention_block))
|
|
|
|
self.blocks = nn.Sequential(*stage_blocks)
|
|
|
|
def forward(self, x : Tensor):
|
|
x = self.patch_embed(x)
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
x = checkpoint_seq(self.blocks, x)
|
|
else:
|
|
x = self.blocks(x)
|
|
return x
|
|
|
|
|
|
class DaViT(nn.Module):
|
|
r""" DaViT
|
|
A PyTorch implementation of `DaViT: Dual Attention Vision Transformers` - https://arxiv.org/abs/2204.03645
|
|
Supports arbitrary input sizes and pyramid feature extraction
|
|
|
|
Args:
|
|
in_chans (int): Number of input image channels. Default: 3
|
|
num_classes (int): Number of classes for classification head. Default: 1000
|
|
depths (tuple(int)): Number of blocks in each stage. Default: (1, 1, 3, 1)
|
|
patch_size (int | tuple(int)): Patch size. Default: 4
|
|
embed_dims (tuple(int)): Patch embedding dimension. Default: (96, 192, 384, 768)
|
|
num_heads (tuple(int)): Number of attention heads in different layers. Default: (3, 6, 12, 24)
|
|
window_size (int): Window size. Default: 7
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
|
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_chans=3,
|
|
depths=(1, 1, 3, 1),
|
|
patch_size=4,
|
|
embed_dims=(96, 192, 384, 768),
|
|
num_heads=(3, 6, 12, 24),
|
|
window_size=7,
|
|
mlp_ratio=4.,
|
|
qkv_bias=True,
|
|
drop_path_rate=0.1,
|
|
norm_layer=nn.LayerNorm,
|
|
attention_types=('spatial', 'channel'),
|
|
ffn=True,
|
|
overlapped_patch=False,
|
|
cpe_act=False,
|
|
drop_rate=0.,
|
|
attn_drop_rate=0.,
|
|
num_classes=1000,
|
|
global_pool='avg'
|
|
):
|
|
super().__init__()
|
|
|
|
architecture = [[index] * item for index, item in enumerate(depths)]
|
|
self.architecture = architecture
|
|
self.embed_dims = embed_dims
|
|
self.num_heads = num_heads
|
|
self.num_stages = len(self.embed_dims)
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, len(attention_types) * len(list(itertools.chain(*self.architecture))))]
|
|
assert self.num_stages == len(self.num_heads) == (sorted(list(itertools.chain(*self.architecture)))[-1] + 1)
|
|
|
|
self.num_classes = num_classes
|
|
self.num_features = embed_dims[-1]
|
|
self.drop_rate=drop_rate
|
|
self.grad_checkpointing = False
|
|
self.feature_info = []
|
|
|
|
self.patch_embed = None
|
|
stages = []
|
|
|
|
for stage_id in range(self.num_stages):
|
|
stage_drop_rates = dpr[len(attention_types) * sum(depths[:stage_id]):len(attention_types) * sum(depths[:stage_id + 1])]
|
|
|
|
stage = DaViTStage(
|
|
in_chans if stage_id == 0 else embed_dims[stage_id - 1],
|
|
embed_dims[stage_id],
|
|
depth = depths[stage_id],
|
|
patch_size = patch_size if stage_id == 0 else 2,
|
|
overlapped_patch = overlapped_patch,
|
|
attention_types = attention_types,
|
|
num_heads = num_heads[stage_id],
|
|
window_size = window_size,
|
|
mlp_ratio = mlp_ratio,
|
|
qkv_bias = qkv_bias,
|
|
drop_path_rates = stage_drop_rates,
|
|
norm_layer = nn.LayerNorm,
|
|
ffn = ffn,
|
|
cpe_act = cpe_act
|
|
)
|
|
|
|
if stage_id == 0:
|
|
self.patch_embed = stage.patch_embed
|
|
stage.patch_embed = nn.Identity()
|
|
|
|
stages.append(stage)
|
|
self.feature_info += [dict(num_chs=self.embed_dims[stage_id], reduction=2, module=f'stages.{stage_id}')]
|
|
|
|
|
|
self.stages = nn.Sequential(*stages)
|
|
|
|
self.norms = norm_layer(self.num_features)
|
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable=True):
|
|
self.grad_checkpointing = enable
|
|
|
|
@torch.jit.ignore
|
|
def get_classifier(self):
|
|
return self.head.fc
|
|
|
|
def reset_classifier(self, num_classes, global_pool=None):
|
|
self.num_classes = num_classes
|
|
if global_pool is None:
|
|
global_pool = self.head.global_pool.pool_type
|
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
|
|
|
|
def forward_features(self, x):
|
|
x = self.patch_embed(x)
|
|
x = self.stages(x)
|
|
# take final feature and norm
|
|
x = self.norms(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
|
#H, W = sizes[-1]
|
|
#x = x.view(-1, H, W, self.embed_dims[-1]).permute(0, 3, 1, 2).contiguous()
|
|
return x
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
return self.head(x, pre_logits=pre_logits)
|
|
|
|
def forward_classifier(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
return self.forward_classifier(x)
|
|
|
|
def checkpoint_filter_fn(state_dict, model):
|
|
""" Remap MSFT checkpoints -> timm """
|
|
if 'head.norm.weight' in state_dict:
|
|
return state_dict # non-MSFT checkpoint
|
|
|
|
if 'state_dict' in state_dict:
|
|
state_dict = state_dict['state_dict']
|
|
|
|
import re
|
|
out_dict = {}
|
|
for k, v in state_dict.items():
|
|
|
|
k = re.sub(r'patch_embeds.([0-9]+)', r'stages.\1.patch_embed', k)
|
|
k = re.sub(r'main_blocks.([0-9]+)', r'stages.\1.blocks', k)
|
|
k = k.replace('stages.0.patch_embed', 'patch_embed')
|
|
k = k.replace('head.', 'head.fc.')
|
|
k = k.replace('cpe.0', 'cpe1')
|
|
k = k.replace('cpe.1', 'cpe2')
|
|
out_dict[k] = v
|
|
return out_dict
|
|
|
|
|
|
def _create_davit(variant, pretrained=False, **kwargs):
|
|
|
|
|
|
|
|
default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1))))
|
|
out_indices = kwargs.pop('out_indices', default_out_indices)
|
|
|
|
model = build_model_with_cfg(
|
|
DaViT,
|
|
variant,
|
|
pretrained,
|
|
pretrained_filter_fn=checkpoint_filter_fn,
|
|
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
|
**kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs): # not sure how this should be set up
|
|
return {
|
|
'url': url,
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
|
|
**kwargs
|
|
}
|
|
|
|
|
|
|
|
# TODO contact authors to get larger pretrained models
|
|
default_cfgs = generate_default_cfgs({
|
|
# official microsoft weights from https://github.com/dingmyu/davit
|
|
'davit_tiny.msft_in1k': _cfg(
|
|
url="https://github.com/fffffgggg54/pytorch-image-models/releases/download/checkpoint/davit_tiny_ed28dd55.pth.tar"),
|
|
'davit_small.msft_in1k': _cfg(
|
|
url="https://github.com/fffffgggg54/pytorch-image-models/releases/download/checkpoint/davit_small_d1ecf281.pth.tar"),
|
|
'davit_base.msft_in1k': _cfg(
|
|
url="https://github.com/fffffgggg54/pytorch-image-models/releases/download/checkpoint/davit_base_67d9ac26.pth.tar"),
|
|
'davit_large': _cfg(),
|
|
'davit_huge': _cfg(),
|
|
'davit_giant': _cfg(),
|
|
})
|
|
|
|
|
|
|
|
@register_model
|
|
def davit_tiny(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=(1, 1, 3, 1), embed_dims=(96, 192, 384, 768),
|
|
num_heads=(3, 6, 12, 24), **kwargs)
|
|
return _create_davit('davit_tiny', pretrained=pretrained, **model_kwargs)
|
|
|
|
@register_model
|
|
def davit_small(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=(1, 1, 9, 1), embed_dims=(96, 192, 384, 768),
|
|
num_heads=(3, 6, 12, 24), **kwargs)
|
|
return _create_davit('davit_small', pretrained=pretrained, **model_kwargs)
|
|
|
|
@register_model
|
|
def davit_base(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=(1, 1, 9, 1), embed_dims=(128, 256, 512, 1024),
|
|
num_heads=(4, 8, 16, 32), **kwargs)
|
|
return _create_davit('davit_base', pretrained=pretrained, **model_kwargs)
|
|
|
|
@register_model
|
|
def davit_large(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=(1, 1, 9, 1), embed_dims=(192, 384, 768, 1536),
|
|
num_heads=(6, 12, 24, 48), **kwargs)
|
|
return _create_davit('davit_large', pretrained=pretrained, **model_kwargs)
|
|
|
|
@register_model
|
|
def davit_huge(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=(1, 1, 9, 1), embed_dims=(256, 512, 1024, 2048),
|
|
num_heads=(8, 16, 32, 64), **kwargs)
|
|
return _create_davit('davit_huge', pretrained=pretrained, **model_kwargs)
|
|
|
|
@register_model
|
|
def davit_giant(pretrained=False, **kwargs):
|
|
model_kwargs = dict(depths=(1, 1, 12, 3), embed_dims=(384, 768, 1536, 3072),
|
|
num_heads=(12, 24, 48, 96), **kwargs)
|
|
return _create_davit('davit_giant', pretrained=pretrained, **model_kwargs)
|