You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/models/model_factory.py

55 lines
2.2 KiB

from models.inception_v4 import inception_v4
from models.inception_resnet_v2 import inception_resnet_v2
from models.densenet import densenet161, densenet121, densenet169, densenet201
from models.resnet import resnet18, resnet34, resnet50, resnet101, resnet152, \
resnext50_32x4d, resnext101_32x4d, resnext101_64x4d, resnext152_32x4d
from models.dpn import dpn68, dpn68b, dpn92, dpn98, dpn131, dpn107
from models.senet import seresnet18, seresnet34, seresnet50, seresnet101, seresnet152, \
seresnext26_32x4d, seresnext50_32x4d, seresnext101_32x4d
from models.xception import xception
from models.pnasnet import pnasnet5large
from models.genmobilenet import \
mnasnet_050, mnasnet_075, mnasnet_100, mnasnet_140, tflite_mnasnet_100,\
semnasnet_050, semnasnet_075, semnasnet_100, semnasnet_140, tflite_semnasnet_100, mnasnet_small,\
mobilenetv1_100, mobilenetv2_100, mobilenetv3_050, mobilenetv3_075, mobilenetv3_100,\
fbnetc_100, chamnetv1_100, chamnetv2_100, spnasnet_100
from models.helpers import load_checkpoint
def _is_genmobilenet(name):
genmobilenets = ['mnasnet', 'semnasnet', 'fbnet', 'chamnet', 'mobilenet']
if any([name.startswith(x) for x in genmobilenets]):
return True
return False
def create_model(
model_name='resnet50',
pretrained=None,
num_classes=1000,
in_chans=3,
checkpoint_path='',
**kwargs):
margs = dict(num_classes=num_classes, in_chans=in_chans, pretrained=pretrained)
# Not all models have support for batchnorm params passed as args, only genmobilenet variants
# FIXME better way to do this without pushing support into every other model fn?
supports_bn_params = _is_genmobilenet(model_name)
if not supports_bn_params and any([x in kwargs for x in ['bn_tf', 'bn_momentum', 'bn_eps']]):
kwargs.pop('bn_tf', None)
kwargs.pop('bn_momentum', None)
kwargs.pop('bn_eps', None)
if model_name in globals():
create_fn = globals()[model_name]
model = create_fn(**margs, **kwargs)
else:
raise RuntimeError('Unknown model (%s)' % model_name)
if checkpoint_path and not pretrained:
load_checkpoint(model, checkpoint_path)
return model