You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/models/levit.py

936 lines
32 KiB

""" LeViT
Paper: `LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference`
- https://arxiv.org/abs/2104.01136
@article{graham2021levit,
title={LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference},
author={Benjamin Graham and Alaaeldin El-Nouby and Hugo Touvron and Pierre Stock and Armand Joulin and Herv\'e J\'egou and Matthijs Douze},
journal={arXiv preprint arXiv:22104.01136},
year={2021}
}
Adapted from official impl at https://github.com/facebookresearch/LeViT, original copyright bellow.
This version combines both conv/linear models and fixes torchscript compatibility.
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
"""
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
# Modified from
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# Copyright 2020 Ross Wightman, Apache-2.0 License
from collections import OrderedDict
from dataclasses import dataclass
from functools import partial
from typing import Dict
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN
from timm.layers import to_ntuple, to_2tuple, get_act_layer, DropPath, trunc_normal_
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq
from ._pretrained import generate_default_cfgs
from ._registry import register_model
__all__ = ['Levit']
class ConvNorm(nn.Module):
def __init__(
self, in_chs, out_chs, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1):
super().__init__()
self.linear = nn.Conv2d(in_chs, out_chs, kernel_size, stride, padding, dilation, groups, bias=False)
self.bn = nn.BatchNorm2d(out_chs)
nn.init.constant_(self.bn.weight, bn_weight_init)
@torch.no_grad()
def fuse(self):
c, bn = self.linear, self.bn
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
w = c.weight * w[:, None, None, None]
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5
m = nn.Conv2d(
w.size(1), w.size(0), w.shape[2:], stride=self.linear.stride,
padding=self.linear.padding, dilation=self.linear.dilation, groups=self.linear.groups)
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
def forward(self, x):
return self.bn(self.linear(x))
class LinearNorm(nn.Module):
def __init__(self, in_features, out_features, bn_weight_init=1):
super().__init__()
self.linear = nn.Linear(in_features, out_features, bias=False)
self.bn = nn.BatchNorm1d(out_features)
nn.init.constant_(self.bn.weight, bn_weight_init)
@torch.no_grad()
def fuse(self):
l, bn = self.linear, self.bn
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
w = l.weight * w[:, None]
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5
m = nn.Linear(w.size(1), w.size(0))
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
def forward(self, x):
x = self.linear(x)
return self.bn(x.flatten(0, 1)).reshape_as(x)
class NormLinear(nn.Module):
def __init__(self, in_features, out_features, bias=True, std=0.02, drop=0.):
super().__init__()
self.bn = nn.BatchNorm1d(in_features)
self.drop = nn.Dropout(drop)
self.linear = nn.Linear(in_features, out_features, bias=bias)
trunc_normal_(self.linear.weight, std=std)
if self.linear.bias is not None:
nn.init.constant_(self.linear.bias, 0)
@torch.no_grad()
def fuse(self):
bn, l = self.bn, self.linear
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5
w = l.weight * w[None, :]
if l.bias is None:
b = b @ self.linear.weight.T
else:
b = (l.weight @ b[:, None]).view(-1) + self.linear.bias
m = nn.Linear(w.size(1), w.size(0))
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
def forward(self, x):
return self.linear(self.drop(self.bn(x)))
class Stem8(nn.Sequential):
def __init__(self, in_chs, out_chs, act_layer):
super().__init__()
self.stride = 8
self.add_module('conv1', ConvNorm(in_chs, out_chs // 4, 3, stride=2, padding=1))
self.add_module('act1', act_layer())
self.add_module('conv2', ConvNorm(out_chs // 4, out_chs // 2, 3, stride=2, padding=1))
self.add_module('act2', act_layer())
self.add_module('conv3', ConvNorm(out_chs // 2, out_chs, 3, stride=2, padding=1))
class Stem16(nn.Sequential):
def __init__(self, in_chs, out_chs, act_layer):
super().__init__()
self.stride = 16
self.add_module('conv1', ConvNorm(in_chs, out_chs // 8, 3, stride=2, padding=1))
self.add_module('act1', act_layer())
self.add_module('conv2', ConvNorm(out_chs // 8, out_chs // 4, 3, stride=2, padding=1))
self.add_module('act2', act_layer())
self.add_module('conv3', ConvNorm(out_chs // 4, out_chs // 2, 3, stride=2, padding=1))
self.add_module('act3', act_layer())
self.add_module('conv4', ConvNorm(out_chs // 2, out_chs, 3, stride=2, padding=1))
class Downsample(nn.Module):
def __init__(self, stride, resolution, use_pool=False):
super().__init__()
self.stride = stride
self.resolution = to_2tuple(resolution)
self.pool = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) if use_pool else None
def forward(self, x):
B, N, C = x.shape
x = x.view(B, self.resolution[0], self.resolution[1], C)
if self.pool is not None:
x = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
else:
x = x[:, ::self.stride, ::self.stride]
return x.reshape(B, -1, C)
class Attention(nn.Module):
attention_bias_cache: Dict[str, torch.Tensor]
def __init__(
self,
dim,
key_dim,
num_heads=8,
attn_ratio=4.,
resolution=14,
use_conv=False,
act_layer=nn.SiLU,
):
super().__init__()
ln_layer = ConvNorm if use_conv else LinearNorm
resolution = to_2tuple(resolution)
self.use_conv = use_conv
self.num_heads = num_heads
self.scale = key_dim ** -0.5
self.key_dim = key_dim
self.key_attn_dim = key_dim * num_heads
self.val_dim = int(attn_ratio * key_dim)
self.val_attn_dim = int(attn_ratio * key_dim) * num_heads
self.qkv = ln_layer(dim, self.val_attn_dim + self.key_attn_dim * 2)
self.proj = nn.Sequential(OrderedDict([
('act', act_layer()),
('ln', ln_layer(self.val_attn_dim, dim, bn_weight_init=0))
]))
self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1]))
pos = torch.stack(torch.meshgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1)
rel_pos = (pos[..., :, None] - pos[..., None, :]).abs()
rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1]
self.register_buffer('attention_bias_idxs', rel_pos, persistent=False)
self.attention_bias_cache = {}
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and self.attention_bias_cache:
self.attention_bias_cache = {} # clear ab cache
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
if torch.jit.is_tracing() or self.training:
return self.attention_biases[:, self.attention_bias_idxs]
else:
device_key = str(device)
if device_key not in self.attention_bias_cache:
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
return self.attention_bias_cache[device_key]
def forward(self, x): # x (B,C,H,W)
if self.use_conv:
B, C, H, W = x.shape
q, k, v = self.qkv(x).view(
B, self.num_heads, -1, H * W).split([self.key_dim, self.key_dim, self.val_dim], dim=2)
attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device)
attn = attn.softmax(dim=-1)
x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W)
else:
B, N, C = x.shape
q, k, v = self.qkv(x).view(
B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.val_dim], dim=3)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 3, 1)
v = v.permute(0, 2, 1, 3)
attn = q @ k * self.scale + self.get_attention_biases(x.device)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim)
x = self.proj(x)
return x
class AttentionDownsample(nn.Module):
attention_bias_cache: Dict[str, torch.Tensor]
def __init__(
self,
in_dim,
out_dim,
key_dim,
num_heads=8,
attn_ratio=2.0,
stride=2,
resolution=14,
use_conv=False,
use_pool=False,
act_layer=nn.SiLU,
):
super().__init__()
resolution = to_2tuple(resolution)
self.stride = stride
self.resolution = resolution
self.num_heads = num_heads
self.key_dim = key_dim
self.key_attn_dim = key_dim * num_heads
self.val_dim = int(attn_ratio * key_dim)
self.val_attn_dim = self.val_dim * self.num_heads
self.scale = key_dim ** -0.5
self.use_conv = use_conv
if self.use_conv:
ln_layer = ConvNorm
sub_layer = partial(
nn.AvgPool2d,
kernel_size=3 if use_pool else 1, padding=1 if use_pool else 0, count_include_pad=False)
else:
ln_layer = LinearNorm
sub_layer = partial(Downsample, resolution=resolution, use_pool=use_pool)
self.kv = ln_layer(in_dim, self.val_attn_dim + self.key_attn_dim)
self.q = nn.Sequential(OrderedDict([
('down', sub_layer(stride=stride)),
('ln', ln_layer(in_dim, self.key_attn_dim))
]))
self.proj = nn.Sequential(OrderedDict([
('act', act_layer()),
('ln', ln_layer(self.val_attn_dim, out_dim))
]))
self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1]))
k_pos = torch.stack(torch.meshgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1)
q_pos = torch.stack(torch.meshgrid(
torch.arange(0, resolution[0], step=stride),
torch.arange(0, resolution[1], step=stride))).flatten(1)
rel_pos = (q_pos[..., :, None] - k_pos[..., None, :]).abs()
rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1]
self.register_buffer('attention_bias_idxs', rel_pos, persistent=False)
self.attention_bias_cache = {} # per-device attention_biases cache
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and self.attention_bias_cache:
self.attention_bias_cache = {} # clear ab cache
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
if torch.jit.is_tracing() or self.training:
return self.attention_biases[:, self.attention_bias_idxs]
else:
device_key = str(device)
if device_key not in self.attention_bias_cache:
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
return self.attention_bias_cache[device_key]
def forward(self, x):
if self.use_conv:
B, C, H, W = x.shape
HH, WW = (H - 1) // self.stride + 1, (W - 1) // self.stride + 1
k, v = self.kv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.val_dim], dim=2)
q = self.q(x).view(B, self.num_heads, self.key_dim, -1)
attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device)
attn = attn.softmax(dim=-1)
x = (v @ attn.transpose(-2, -1)).reshape(B, self.val_attn_dim, HH, WW)
else:
B, N, C = x.shape
k, v = self.kv(x).view(B, N, self.num_heads, -1).split([self.key_dim, self.val_dim], dim=3)
k = k.permute(0, 2, 3, 1) # BHCN
v = v.permute(0, 2, 1, 3) # BHNC
q = self.q(x).view(B, -1, self.num_heads, self.key_dim).permute(0, 2, 1, 3)
attn = q @ k * self.scale + self.get_attention_biases(x.device)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, -1, self.val_attn_dim)
x = self.proj(x)
return x
class LevitMlp(nn.Module):
""" MLP for Levit w/ normalization + ability to switch btw conv and linear
"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
use_conv=False,
act_layer=nn.SiLU,
drop=0.
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
ln_layer = ConvNorm if use_conv else LinearNorm
self.ln1 = ln_layer(in_features, hidden_features)
self.act = act_layer()
self.drop = nn.Dropout(drop)
self.ln2 = ln_layer(hidden_features, out_features, bn_weight_init=0)
def forward(self, x):
x = self.ln1(x)
x = self.act(x)
x = self.drop(x)
x = self.ln2(x)
return x
class LevitDownsample(nn.Module):
def __init__(
self,
in_dim,
out_dim,
key_dim,
num_heads=8,
attn_ratio=4.,
mlp_ratio=2.,
act_layer=nn.SiLU,
attn_act_layer=None,
resolution=14,
use_conv=False,
use_pool=False,
drop_path=0.,
):
super().__init__()
attn_act_layer = attn_act_layer or act_layer
self.attn_downsample = AttentionDownsample(
in_dim=in_dim,
out_dim=out_dim,
key_dim=key_dim,
num_heads=num_heads,
attn_ratio=attn_ratio,
act_layer=attn_act_layer,
resolution=resolution,
use_conv=use_conv,
use_pool=use_pool,
)
self.mlp = LevitMlp(
out_dim,
int(out_dim * mlp_ratio),
use_conv=use_conv,
act_layer=act_layer
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
x = self.attn_downsample(x)
x = x + self.drop_path(self.mlp(x))
return x
class LevitBlock(nn.Module):
def __init__(
self,
dim,
key_dim,
num_heads=8,
attn_ratio=4.,
mlp_ratio=2.,
resolution=14,
use_conv=False,
act_layer=nn.SiLU,
attn_act_layer=None,
drop_path=0.,
):
super().__init__()
attn_act_layer = attn_act_layer or act_layer
self.attn = Attention(
dim=dim,
key_dim=key_dim,
num_heads=num_heads,
attn_ratio=attn_ratio,
resolution=resolution,
use_conv=use_conv,
act_layer=attn_act_layer,
)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.mlp = LevitMlp(
dim,
int(dim * mlp_ratio),
use_conv=use_conv,
act_layer=act_layer
)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
x = x + self.drop_path1(self.attn(x))
x = x + self.drop_path2(self.mlp(x))
return x
class LevitStage(nn.Module):
def __init__(
self,
in_dim,
out_dim,
key_dim,
depth=4,
num_heads=8,
attn_ratio=4.0,
mlp_ratio=4.0,
act_layer=nn.SiLU,
attn_act_layer=None,
resolution=14,
downsample='',
use_conv=False,
drop_path=0.,
):
super().__init__()
resolution = to_2tuple(resolution)
if downsample:
self.downsample = LevitDownsample(
in_dim,
out_dim,
key_dim=key_dim,
num_heads=in_dim // key_dim,
attn_ratio=4.,
mlp_ratio=2.,
act_layer=act_layer,
attn_act_layer=attn_act_layer,
resolution=resolution,
use_conv=use_conv,
drop_path=drop_path,
)
resolution = [(r - 1) // 2 + 1 for r in resolution]
else:
assert in_dim == out_dim
self.downsample = nn.Identity()
blocks = []
for _ in range(depth):
blocks += [LevitBlock(
out_dim,
key_dim,
num_heads=num_heads,
attn_ratio=attn_ratio,
mlp_ratio=mlp_ratio,
act_layer=act_layer,
attn_act_layer=attn_act_layer,
resolution=resolution,
use_conv=use_conv,
drop_path=drop_path,
)]
self.blocks = nn.Sequential(*blocks)
def forward(self, x):
x = self.downsample(x)
x = self.blocks(x)
return x
class Levit(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
NOTE: distillation is defaulted to True since pretrained weights use it, will cause problems
w/ train scripts that don't take tuple outputs,
"""
def __init__(
self,
img_size=224,
in_chans=3,
num_classes=1000,
embed_dim=(192,),
key_dim=64,
depth=(12,),
num_heads=(3,),
attn_ratio=2.,
mlp_ratio=2.,
stem_backbone=None,
stem_stride=None,
stem_type='s16',
down_op='subsample',
act_layer='hard_swish',
attn_act_layer=None,
use_conv=False,
global_pool='avg',
drop_rate=0.,
drop_path_rate=0.):
super().__init__()
act_layer = get_act_layer(act_layer)
attn_act_layer = get_act_layer(attn_act_layer or act_layer)
self.use_conv = use_conv
self.num_classes = num_classes
self.global_pool = global_pool
self.num_features = embed_dim[-1]
self.embed_dim = embed_dim
self.drop_rate = drop_rate
self.grad_checkpointing = False
self.feature_info = []
num_stages = len(embed_dim)
assert len(depth) == num_stages
num_heads = to_ntuple(num_stages)(num_heads)
attn_ratio = to_ntuple(num_stages)(attn_ratio)
mlp_ratio = to_ntuple(num_stages)(mlp_ratio)
if stem_backbone is not None:
assert stem_stride >= 2
self.stem = stem_backbone
stride = stem_stride
else:
assert stem_type in ('s16', 's8')
if stem_type == 's16':
self.stem = Stem16(in_chans, embed_dim[0], act_layer=act_layer)
else:
self.stem = Stem8(in_chans, embed_dim[0], act_layer=act_layer)
stride = self.stem.stride
resolution = tuple([i // p for i, p in zip(to_2tuple(img_size), to_2tuple(stride))])
in_dim = embed_dim[0]
stages = []
for i in range(num_stages):
stage_stride = 2 if i > 0 else 1
stages += [LevitStage(
in_dim,
embed_dim[i],
key_dim,
depth=depth[i],
num_heads=num_heads[i],
attn_ratio=attn_ratio[i],
mlp_ratio=mlp_ratio[i],
act_layer=act_layer,
attn_act_layer=attn_act_layer,
resolution=resolution,
use_conv=use_conv,
downsample=down_op if stage_stride == 2 else '',
drop_path=drop_path_rate
)]
stride *= stage_stride
resolution = tuple([(r - 1) // stage_stride + 1 for r in resolution])
self.feature_info += [dict(num_chs=embed_dim[i], reduction=stride, module=f'stages.{i}')]
in_dim = embed_dim[i]
self.stages = nn.Sequential(*stages)
# Classifier head
self.head = NormLinear(embed_dim[-1], num_classes, drop=drop_rate) if num_classes > 0 else nn.Identity()
@torch.jit.ignore
def no_weight_decay(self):
return {x for x in self.state_dict().keys() if 'attention_biases' in x}
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=None, distillation=None):
self.num_classes = num_classes
if global_pool is not None:
self.global_pool = global_pool
self.head = NormLinear(
self.embed_dim[-1], num_classes, drop=self.drop_rate) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
x = self.stem(x)
if not self.use_conv:
x = x.flatten(2).transpose(1, 2)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.stages, x)
else:
x = self.stages(x)
return x
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool == 'avg':
x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1)
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
class LevitDistilled(Levit):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.head_dist = NormLinear(self.num_features, self.num_classes) if self.num_classes > 0 else nn.Identity()
self.distilled_training = False # must set this True to train w/ distillation token
@torch.jit.ignore
def get_classifier(self):
return self.head, self.head_dist
def reset_classifier(self, num_classes, global_pool=None, distillation=None):
self.num_classes = num_classes
if global_pool is not None:
self.global_pool = global_pool
self.head = NormLinear(
self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else nn.Identity()
self.head_dist = NormLinear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
@torch.jit.ignore
def set_distilled_training(self, enable=True):
self.distilled_training = enable
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool == 'avg':
x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1)
if pre_logits:
return x
x, x_dist = self.head(x), self.head_dist(x)
if self.distilled_training and self.training and not torch.jit.is_scripting():
# only return separate classification predictions when training in distilled mode
return x, x_dist
else:
# during standard train/finetune, inference average the classifier predictions
return (x + x_dist) / 2
def checkpoint_filter_fn(state_dict, model):
if 'model' in state_dict:
state_dict = state_dict['model']
# filter out attn biases, should not have been persistent
state_dict = {k: v for k, v in state_dict.items() if 'attention_bias_idxs' not in k}
D = model.state_dict()
out_dict = {}
for ka, kb, va, vb in zip(D.keys(), state_dict.keys(), D.values(), state_dict.values()):
if va.ndim == 4 and vb.ndim == 2:
vb = vb[:, :, None, None]
if va.shape != vb.shape:
# head or first-conv shapes may change for fine-tune
assert 'head' in ka or 'stem.conv1.linear' in ka
out_dict[ka] = vb
return out_dict
model_cfgs = dict(
levit_128s=dict(
embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 6, 8), depth=(2, 3, 4)),
levit_128=dict(
embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 8, 12), depth=(4, 4, 4)),
levit_192=dict(
embed_dim=(192, 288, 384), key_dim=32, num_heads=(3, 5, 6), depth=(4, 4, 4)),
levit_256=dict(
embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 4, 4)),
levit_384=dict(
embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4)),
# stride-8 stem experiments
levit_384_s8=dict(
embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4),
act_layer='silu', stem_type='s8'),
levit_512_s8=dict(
embed_dim=(512, 640, 896), key_dim=64, num_heads=(8, 10, 14), depth=(4, 4, 4),
act_layer='silu', stem_type='s8'),
# wider experiments
levit_512=dict(
embed_dim=(512, 768, 1024), key_dim=64, num_heads=(8, 12, 16), depth=(4, 4, 4), act_layer='silu'),
# deeper experiments
levit_256d=dict(
embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 8, 6), act_layer='silu'),
levit_512d=dict(
embed_dim=(512, 640, 768), key_dim=64, num_heads=(8, 10, 12), depth=(4, 8, 6), act_layer='silu'),
)
def create_levit(variant, cfg_variant=None, pretrained=False, distilled=True, **kwargs):
is_conv = '_conv' in variant
out_indices = kwargs.pop('out_indices', (0, 1, 2))
if kwargs.get('features_only', None):
if not is_conv:
raise RuntimeError('features_only not implemented for LeVit in non-convolutional mode.')
if cfg_variant is None:
if variant in model_cfgs:
cfg_variant = variant
elif is_conv:
cfg_variant = variant.replace('_conv', '')
model_cfg = dict(model_cfgs[cfg_variant], **kwargs)
model = build_model_with_cfg(
LevitDistilled if distilled else Levit,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
**model_cfg,
)
return model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.conv1.linear', 'classifier': ('head.linear', 'head_dist.linear'),
**kwargs
}
default_cfgs = generate_default_cfgs({
# weights in nn.Linear mode
'levit_128s.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
),
'levit_128.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
),
'levit_192.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
),
'levit_256.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
),
'levit_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
),
# weights in nn.Conv2d mode
'levit_conv_128s.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
pool_size=(4, 4),
),
'levit_conv_128.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
pool_size=(4, 4),
),
'levit_conv_192.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
pool_size=(4, 4),
),
'levit_conv_256.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
pool_size=(4, 4),
),
'levit_conv_384.fb_dist_in1k': _cfg(
hf_hub_id='timm/',
pool_size=(4, 4),
),
'levit_384_s8.untrained': _cfg(classifier='head.linear'),
'levit_512_s8.untrained': _cfg(classifier='head.linear'),
'levit_512.untrained': _cfg(classifier='head.linear'),
'levit_256d.untrained': _cfg(classifier='head.linear'),
'levit_512d.untrained': _cfg(classifier='head.linear'),
'levit_conv_384_s8.untrained': _cfg(classifier='head.linear'),
'levit_conv_512_s8.untrained': _cfg(classifier='head.linear'),
'levit_conv_512.untrained': _cfg(classifier='head.linear'),
'levit_conv_256d.untrained': _cfg(classifier='head.linear'),
'levit_conv_512d.untrained': _cfg(classifier='head.linear'),
})
@register_model
def levit_128s(pretrained=False, **kwargs):
return create_levit('levit_128s', pretrained=pretrained, **kwargs)
@register_model
def levit_128(pretrained=False, **kwargs):
return create_levit('levit_128', pretrained=pretrained, **kwargs)
@register_model
def levit_192(pretrained=False, **kwargs):
return create_levit('levit_192', pretrained=pretrained, **kwargs)
@register_model
def levit_256(pretrained=False, **kwargs):
return create_levit('levit_256', pretrained=pretrained, **kwargs)
@register_model
def levit_384(pretrained=False, **kwargs):
return create_levit('levit_384', pretrained=pretrained, **kwargs)
@register_model
def levit_384_s8(pretrained=False, **kwargs):
return create_levit('levit_384_s8', pretrained=pretrained, **kwargs)
@register_model
def levit_512_s8(pretrained=False, **kwargs):
return create_levit('levit_512_s8', pretrained=pretrained, distilled=False, **kwargs)
@register_model
def levit_512(pretrained=False, **kwargs):
return create_levit('levit_512', pretrained=pretrained, distilled=False, **kwargs)
@register_model
def levit_256d(pretrained=False, **kwargs):
return create_levit('levit_256d', pretrained=pretrained, distilled=False, **kwargs)
@register_model
def levit_512d(pretrained=False, **kwargs):
return create_levit('levit_512d', pretrained=pretrained, distilled=False, **kwargs)
@register_model
def levit_conv_128s(pretrained=False, **kwargs):
return create_levit('levit_conv_128s', pretrained=pretrained, use_conv=True, **kwargs)
@register_model
def levit_conv_128(pretrained=False, **kwargs):
return create_levit('levit_conv_128', pretrained=pretrained, use_conv=True, **kwargs)
@register_model
def levit_conv_192(pretrained=False, **kwargs):
return create_levit('levit_conv_192', pretrained=pretrained, use_conv=True, **kwargs)
@register_model
def levit_conv_256(pretrained=False, **kwargs):
return create_levit('levit_conv_256', pretrained=pretrained, use_conv=True, **kwargs)
@register_model
def levit_conv_384(pretrained=False, **kwargs):
return create_levit('levit_conv_384', pretrained=pretrained, use_conv=True, **kwargs)
@register_model
def levit_conv_384_s8(pretrained=False, **kwargs):
return create_levit('levit_conv_384_s8', pretrained=pretrained, use_conv=True, **kwargs)
@register_model
def levit_conv_512_s8(pretrained=False, **kwargs):
return create_levit('levit_conv_512_s8', pretrained=pretrained, use_conv=True, distilled=False, **kwargs)
@register_model
def levit_conv_512(pretrained=False, **kwargs):
return create_levit('levit_conv_512', pretrained=pretrained, use_conv=True, distilled=False, **kwargs)
@register_model
def levit_conv_256d(pretrained=False, **kwargs):
return create_levit('levit_conv_256d', pretrained=pretrained, use_conv=True, distilled=False, **kwargs)
@register_model
def levit_conv_512d(pretrained=False, **kwargs):
return create_levit('levit_conv_512d', pretrained=pretrained, use_conv=True, distilled=False, **kwargs)