You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
337 lines
12 KiB
337 lines
12 KiB
""" Optimizer Factory w/ Custom Weight Decay
|
|
Hacked together by / Copyright 2021 Ross Wightman
|
|
"""
|
|
import json
|
|
from itertools import islice
|
|
from typing import Optional, Callable, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
|
|
from timm.models.helpers import group_parameters
|
|
|
|
from .adabelief import AdaBelief
|
|
from .adafactor import Adafactor
|
|
from .adahessian import Adahessian
|
|
from .adamp import AdamP
|
|
from .lamb import Lamb
|
|
from .lars import Lars
|
|
from .lookahead import Lookahead
|
|
from .madgrad import MADGRAD
|
|
from .nadam import Nadam
|
|
from .nvnovograd import NvNovoGrad
|
|
from .radam import RAdam
|
|
from .rmsprop_tf import RMSpropTF
|
|
from .sgdp import SGDP
|
|
|
|
try:
|
|
from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD
|
|
has_apex = True
|
|
except ImportError:
|
|
has_apex = False
|
|
|
|
|
|
def param_groups_weight_decay(
|
|
model: nn.Module,
|
|
weight_decay=1e-5,
|
|
no_weight_decay_list=()
|
|
):
|
|
no_weight_decay_list = set(no_weight_decay_list)
|
|
decay = []
|
|
no_decay = []
|
|
for name, param in model.named_parameters():
|
|
if not param.requires_grad:
|
|
continue
|
|
|
|
if param.ndim <= 1 or name.endswith(".bias") or name in no_weight_decay_list:
|
|
no_decay.append(param)
|
|
else:
|
|
decay.append(param)
|
|
|
|
return [
|
|
{'params': no_decay, 'weight_decay': 0.},
|
|
{'params': decay, 'weight_decay': weight_decay}]
|
|
|
|
|
|
def _group(it, size):
|
|
it = iter(it)
|
|
return iter(lambda: tuple(islice(it, size)), ())
|
|
|
|
|
|
def _layer_map(model, layers_per_group=12, num_groups=None):
|
|
def _in_head(n, hp):
|
|
if not hp:
|
|
return True
|
|
elif isinstance(hp, (tuple, list)):
|
|
return any([n.startswith(hpi) for hpi in hp])
|
|
else:
|
|
return n.startswith(hp)
|
|
|
|
head_prefix = getattr(model, 'pretrained_cfg', {}).get('classifier', None)
|
|
names_trunk = []
|
|
names_head = []
|
|
for n, _ in model.named_parameters():
|
|
names_head.append(n) if _in_head(n, head_prefix) else names_trunk.append(n)
|
|
|
|
# group non-head layers
|
|
num_trunk_layers = len(names_trunk)
|
|
if num_groups is not None:
|
|
layers_per_group = -(num_trunk_layers // -num_groups)
|
|
names_trunk = list(_group(names_trunk, layers_per_group))
|
|
|
|
num_trunk_groups = len(names_trunk)
|
|
layer_map = {n: i for i, l in enumerate(names_trunk) for n in l}
|
|
layer_map.update({n: num_trunk_groups for n in names_head})
|
|
return layer_map
|
|
|
|
|
|
def param_groups_layer_decay(
|
|
model: nn.Module,
|
|
weight_decay: float = 0.05,
|
|
no_weight_decay_list: Tuple[str] = (),
|
|
layer_decay: float = .75,
|
|
end_layer_decay: Optional[float] = None,
|
|
):
|
|
"""
|
|
Parameter groups for layer-wise lr decay & weight decay
|
|
Based on BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L58
|
|
"""
|
|
no_weight_decay_list = set(no_weight_decay_list)
|
|
param_group_names = {} # NOTE for debugging
|
|
param_groups = {}
|
|
|
|
if hasattr(model, 'group_matcher'):
|
|
# FIXME interface needs more work
|
|
layer_map = group_parameters(model, model.group_matcher(coarse=False), reverse=True)
|
|
else:
|
|
# fallback
|
|
layer_map = _layer_map(model)
|
|
num_layers = max(layer_map.values()) + 1
|
|
layer_max = num_layers - 1
|
|
layer_scales = list(layer_decay ** (layer_max - i) for i in range(num_layers))
|
|
|
|
for name, param in model.named_parameters():
|
|
if not param.requires_grad:
|
|
continue
|
|
|
|
# no decay: all 1D parameters and model specific ones
|
|
if param.ndim == 1 or name in no_weight_decay_list:
|
|
g_decay = "no_decay"
|
|
this_decay = 0.
|
|
else:
|
|
g_decay = "decay"
|
|
this_decay = weight_decay
|
|
|
|
layer_id = layer_map.get(name, layer_max)
|
|
group_name = "layer_%d_%s" % (layer_id, g_decay)
|
|
|
|
if group_name not in param_groups:
|
|
this_scale = layer_scales[layer_id]
|
|
param_group_names[group_name] = {
|
|
"lr_scale": this_scale,
|
|
"weight_decay": this_decay,
|
|
"param_names": [],
|
|
}
|
|
param_groups[group_name] = {
|
|
"lr_scale": this_scale,
|
|
"weight_decay": this_decay,
|
|
"params": [],
|
|
}
|
|
|
|
param_group_names[group_name]["param_names"].append(name)
|
|
param_groups[group_name]["params"].append(param)
|
|
|
|
# FIXME temporary output to debug new feature
|
|
print("parameter groups: \n%s" % json.dumps(param_group_names, indent=2))
|
|
|
|
return list(param_groups.values())
|
|
|
|
|
|
def optimizer_kwargs(cfg):
|
|
""" cfg/argparse to kwargs helper
|
|
Convert optimizer args in argparse args or cfg like object to keyword args for updated create fn.
|
|
"""
|
|
kwargs = dict(
|
|
opt=cfg.opt,
|
|
lr=cfg.lr,
|
|
weight_decay=cfg.weight_decay,
|
|
momentum=cfg.momentum)
|
|
if getattr(cfg, 'opt_eps', None) is not None:
|
|
kwargs['eps'] = cfg.opt_eps
|
|
if getattr(cfg, 'opt_betas', None) is not None:
|
|
kwargs['betas'] = cfg.opt_betas
|
|
if getattr(cfg, 'layer_decay', None) is not None:
|
|
kwargs['layer_decay'] = cfg.layer_decay
|
|
if getattr(cfg, 'opt_args', None) is not None:
|
|
kwargs.update(cfg.opt_args)
|
|
return kwargs
|
|
|
|
|
|
def create_optimizer(args, model, filter_bias_and_bn=True):
|
|
""" Legacy optimizer factory for backwards compatibility.
|
|
NOTE: Use create_optimizer_v2 for new code.
|
|
"""
|
|
return create_optimizer_v2(
|
|
model,
|
|
**optimizer_kwargs(cfg=args),
|
|
filter_bias_and_bn=filter_bias_and_bn,
|
|
)
|
|
|
|
|
|
def create_optimizer_v2(
|
|
model_or_params,
|
|
opt: str = 'sgd',
|
|
lr: Optional[float] = None,
|
|
weight_decay: float = 0.,
|
|
momentum: float = 0.9,
|
|
filter_bias_and_bn: bool = True,
|
|
layer_decay: Optional[float] = None,
|
|
param_group_fn: Optional[Callable] = None,
|
|
**kwargs):
|
|
""" Create an optimizer.
|
|
|
|
TODO currently the model is passed in and all parameters are selected for optimization.
|
|
For more general use an interface that allows selection of parameters to optimize and lr groups, one of:
|
|
* a filter fn interface that further breaks params into groups in a weight_decay compatible fashion
|
|
* expose the parameters interface and leave it up to caller
|
|
|
|
Args:
|
|
model_or_params (nn.Module): model containing parameters to optimize
|
|
opt: name of optimizer to create
|
|
lr: initial learning rate
|
|
weight_decay: weight decay to apply in optimizer
|
|
momentum: momentum for momentum based optimizers (others may use betas via kwargs)
|
|
filter_bias_and_bn: filter out bias, bn and other 1d params from weight decay
|
|
**kwargs: extra optimizer specific kwargs to pass through
|
|
|
|
Returns:
|
|
Optimizer
|
|
"""
|
|
if isinstance(model_or_params, nn.Module):
|
|
# a model was passed in, extract parameters and add weight decays to appropriate layers
|
|
no_weight_decay = {}
|
|
if hasattr(model_or_params, 'no_weight_decay'):
|
|
no_weight_decay = model_or_params.no_weight_decay()
|
|
|
|
if param_group_fn:
|
|
parameters = param_group_fn(model_or_params)
|
|
elif layer_decay is not None:
|
|
parameters = param_groups_layer_decay(
|
|
model_or_params,
|
|
weight_decay=weight_decay,
|
|
layer_decay=layer_decay,
|
|
no_weight_decay_list=no_weight_decay)
|
|
weight_decay = 0.
|
|
elif weight_decay and filter_bias_and_bn:
|
|
parameters = param_groups_weight_decay(model_or_params, weight_decay, no_weight_decay)
|
|
weight_decay = 0.
|
|
else:
|
|
parameters = model_or_params.parameters()
|
|
else:
|
|
# iterable of parameters or param groups passed in
|
|
parameters = model_or_params
|
|
|
|
opt_lower = opt.lower()
|
|
opt_split = opt_lower.split('_')
|
|
opt_lower = opt_split[-1]
|
|
if 'fused' in opt_lower:
|
|
assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers'
|
|
|
|
opt_args = dict(weight_decay=weight_decay, **kwargs)
|
|
if lr is not None:
|
|
opt_args.setdefault('lr', lr)
|
|
|
|
# basic SGD & related
|
|
if opt_lower == 'sgd' or opt_lower == 'nesterov':
|
|
# NOTE 'sgd' refers to SGD + nesterov momentum for legacy / backwards compat reasons
|
|
opt_args.pop('eps', None)
|
|
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=True, **opt_args)
|
|
elif opt_lower == 'momentum':
|
|
opt_args.pop('eps', None)
|
|
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=False, **opt_args)
|
|
elif opt_lower == 'sgdp':
|
|
optimizer = SGDP(parameters, momentum=momentum, nesterov=True, **opt_args)
|
|
|
|
# adaptive
|
|
elif opt_lower == 'adam':
|
|
optimizer = optim.Adam(parameters, **opt_args)
|
|
elif opt_lower == 'adamw':
|
|
optimizer = optim.AdamW(parameters, **opt_args)
|
|
elif opt_lower == 'adamp':
|
|
optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args)
|
|
elif opt_lower == 'nadam':
|
|
try:
|
|
# NOTE PyTorch >= 1.10 should have native NAdam
|
|
optimizer = optim.Nadam(parameters, **opt_args)
|
|
except AttributeError:
|
|
optimizer = Nadam(parameters, **opt_args)
|
|
elif opt_lower == 'radam':
|
|
optimizer = RAdam(parameters, **opt_args)
|
|
elif opt_lower == 'adamax':
|
|
optimizer = optim.Adamax(parameters, **opt_args)
|
|
elif opt_lower == 'adabelief':
|
|
optimizer = AdaBelief(parameters, rectify=False, **opt_args)
|
|
elif opt_lower == 'radabelief':
|
|
optimizer = AdaBelief(parameters, rectify=True, **opt_args)
|
|
elif opt_lower == 'adadelta':
|
|
optimizer = optim.Adadelta(parameters, **opt_args)
|
|
elif opt_lower == 'adagrad':
|
|
opt_args.setdefault('eps', 1e-8)
|
|
optimizer = optim.Adagrad(parameters, **opt_args)
|
|
elif opt_lower == 'adafactor':
|
|
optimizer = Adafactor(parameters, **opt_args)
|
|
elif opt_lower == 'lamb':
|
|
optimizer = Lamb(parameters, **opt_args)
|
|
elif opt_lower == 'lambc':
|
|
optimizer = Lamb(parameters, trust_clip=True, **opt_args)
|
|
elif opt_lower == 'larc':
|
|
optimizer = Lars(parameters, momentum=momentum, trust_clip=True, **opt_args)
|
|
elif opt_lower == 'lars':
|
|
optimizer = Lars(parameters, momentum=momentum, **opt_args)
|
|
elif opt_lower == 'nlarc':
|
|
optimizer = Lars(parameters, momentum=momentum, trust_clip=True, nesterov=True, **opt_args)
|
|
elif opt_lower == 'nlars':
|
|
optimizer = Lars(parameters, momentum=momentum, nesterov=True, **opt_args)
|
|
elif opt_lower == 'madgrad':
|
|
optimizer = MADGRAD(parameters, momentum=momentum, **opt_args)
|
|
elif opt_lower == 'madgradw':
|
|
optimizer = MADGRAD(parameters, momentum=momentum, decoupled_decay=True, **opt_args)
|
|
elif opt_lower == 'novograd' or opt_lower == 'nvnovograd':
|
|
optimizer = NvNovoGrad(parameters, **opt_args)
|
|
elif opt_lower == 'rmsprop':
|
|
optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=momentum, **opt_args)
|
|
elif opt_lower == 'rmsproptf':
|
|
optimizer = RMSpropTF(parameters, alpha=0.9, momentum=momentum, **opt_args)
|
|
|
|
# second order
|
|
elif opt_lower == 'adahessian':
|
|
optimizer = Adahessian(parameters, **opt_args)
|
|
|
|
# NVIDIA fused optimizers, require APEX to be installed
|
|
elif opt_lower == 'fusedsgd':
|
|
opt_args.pop('eps', None)
|
|
optimizer = FusedSGD(parameters, momentum=momentum, nesterov=True, **opt_args)
|
|
elif opt_lower == 'fusedmomentum':
|
|
opt_args.pop('eps', None)
|
|
optimizer = FusedSGD(parameters, momentum=momentum, nesterov=False, **opt_args)
|
|
elif opt_lower == 'fusedadam':
|
|
optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args)
|
|
elif opt_lower == 'fusedadamw':
|
|
optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args)
|
|
elif opt_lower == 'fusedlamb':
|
|
optimizer = FusedLAMB(parameters, **opt_args)
|
|
elif opt_lower == 'fusednovograd':
|
|
opt_args.setdefault('betas', (0.95, 0.98))
|
|
optimizer = FusedNovoGrad(parameters, **opt_args)
|
|
|
|
else:
|
|
assert False and "Invalid optimizer"
|
|
raise ValueError
|
|
|
|
if len(opt_split) > 1:
|
|
if opt_split[0] == 'lookahead':
|
|
optimizer = Lookahead(optimizer)
|
|
|
|
return optimizer
|