You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
223 lines
9.1 KiB
223 lines
9.1 KiB
""" DeiT - Data-efficient Image Transformers
|
|
|
|
DeiT model defs and weights from https://github.com/facebookresearch/deit, original copyright below
|
|
paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877
|
|
|
|
Modifications copyright 2021, Ross Wightman
|
|
"""
|
|
# Copyright (c) 2015-present, Facebook, Inc.
|
|
# All rights reserved.
|
|
import torch
|
|
from torch import nn as nn
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
from timm.models.vision_transformer import VisionTransformer, trunc_normal_, checkpoint_filter_fn
|
|
|
|
from .helpers import build_model_with_cfg, checkpoint_seq
|
|
from .registry import register_model
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url,
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
'first_conv': 'patch_embed.proj', 'classifier': 'head',
|
|
**kwargs
|
|
}
|
|
|
|
|
|
default_cfgs = {
|
|
# deit models (FB weights)
|
|
'deit_tiny_patch16_224': _cfg(
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'),
|
|
'deit_small_patch16_224': _cfg(
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'),
|
|
'deit_base_patch16_224': _cfg(
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth'),
|
|
'deit_base_patch16_384': _cfg(
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth',
|
|
input_size=(3, 384, 384), crop_pct=1.0),
|
|
|
|
'deit_tiny_distilled_patch16_224': _cfg(
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth',
|
|
classifier=('head', 'head_dist')),
|
|
'deit_small_distilled_patch16_224': _cfg(
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth',
|
|
classifier=('head', 'head_dist')),
|
|
'deit_base_distilled_patch16_224': _cfg(
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth',
|
|
classifier=('head', 'head_dist')),
|
|
'deit_base_distilled_patch16_384': _cfg(
|
|
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth',
|
|
input_size=(3, 384, 384), crop_pct=1.0,
|
|
classifier=('head', 'head_dist')),
|
|
}
|
|
|
|
|
|
class VisionTransformerDistilled(VisionTransformer):
|
|
""" Vision Transformer w/ Distillation Token and Head
|
|
|
|
Distillation token & head support for `DeiT: Data-efficient Image Transformers`
|
|
- https://arxiv.org/abs/2012.12877
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
weight_init = kwargs.pop('weight_init', '')
|
|
super().__init__(*args, **kwargs, weight_init='skip')
|
|
assert self.global_pool in ('token',)
|
|
|
|
self.num_tokens = 2
|
|
self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, self.patch_embed.num_patches + self.num_tokens, self.embed_dim))
|
|
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity()
|
|
self.distilled_training = False
|
|
|
|
self.init_weights(weight_init)
|
|
|
|
def init_weights(self, mode=''):
|
|
trunc_normal_(self.dist_token, std=.02)
|
|
super().init_weights(mode=mode)
|
|
|
|
@torch.jit.ignore
|
|
def group_matcher(self, coarse=False):
|
|
return dict(
|
|
stem=r'^cls_token|pos_embed|patch_embed|dist_token',
|
|
blocks=[
|
|
(r'^blocks.(\d+)', None),
|
|
(r'^norm', (99999,))] # final norm w/ last block
|
|
)
|
|
|
|
@torch.jit.ignore
|
|
def get_classifier(self):
|
|
return self.head, self.head_dist
|
|
|
|
def reset_classifier(self, num_classes, global_pool=None):
|
|
self.num_classes = num_classes
|
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
@torch.jit.ignore
|
|
def set_distilled_training(self, enable=True):
|
|
self.distilled_training = enable
|
|
|
|
def forward_features(self, x) -> torch.Tensor:
|
|
x = self.patch_embed(x)
|
|
x = torch.cat((
|
|
self.cls_token.expand(x.shape[0], -1, -1),
|
|
self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
|
|
x = self.pos_drop(x + self.pos_embed)
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
x = checkpoint_seq(self.blocks, x)
|
|
else:
|
|
x = self.blocks(x)
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
|
|
if pre_logits:
|
|
return (x[:, 0] + x[:, 1]) / 2
|
|
x, x_dist = self.head(x[:, 0]), self.head_dist(x[:, 1])
|
|
if self.distilled_training and self.training and not torch.jit.is_scripting():
|
|
# only return separate classification predictions when training in distilled mode
|
|
return x, x_dist
|
|
else:
|
|
# during standard train / finetune, inference average the classifier predictions
|
|
return (x + x_dist) / 2
|
|
|
|
|
|
def _create_deit(variant, pretrained=False, distilled=False, **kwargs):
|
|
if kwargs.get('features_only', None):
|
|
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
|
model_cls = VisionTransformerDistilled if distilled else VisionTransformer
|
|
model = build_model_with_cfg(
|
|
model_cls, variant, pretrained,
|
|
pretrained_filter_fn=checkpoint_filter_fn,
|
|
**kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def deit_tiny_patch16_224(pretrained=False, **kwargs):
|
|
""" DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
|
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
|
"""
|
|
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
|
|
model = _create_deit('deit_tiny_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def deit_small_patch16_224(pretrained=False, **kwargs):
|
|
""" DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
|
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
|
"""
|
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
|
|
model = _create_deit('deit_small_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def deit_base_patch16_224(pretrained=False, **kwargs):
|
|
""" DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
|
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
|
"""
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
model = _create_deit('deit_base_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def deit_base_patch16_384(pretrained=False, **kwargs):
|
|
""" DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
|
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
|
"""
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
model = _create_deit('deit_base_patch16_384', pretrained=pretrained, **model_kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs):
|
|
""" DeiT-tiny distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
|
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
|
"""
|
|
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
|
|
model = _create_deit(
|
|
'deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def deit_small_distilled_patch16_224(pretrained=False, **kwargs):
|
|
""" DeiT-small distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
|
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
|
"""
|
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
|
|
model = _create_deit(
|
|
'deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def deit_base_distilled_patch16_224(pretrained=False, **kwargs):
|
|
""" DeiT-base distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
|
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
|
"""
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
model = _create_deit(
|
|
'deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def deit_base_distilled_patch16_384(pretrained=False, **kwargs):
|
|
""" DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
|
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
|
"""
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
model = _create_deit(
|
|
'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs)
|
|
return model
|