262 lines
9.6 KiB
262 lines
9.6 KiB
""" ReXNet
|
|
|
|
A PyTorch impl of `ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network` -
|
|
https://arxiv.org/abs/2007.00992
|
|
|
|
Adapted from original impl at https://github.com/clovaai/rexnet
|
|
Copyright (c) 2020-present NAVER Corp. MIT license
|
|
|
|
Changes for timm, feature extraction, and rounded channel variant hacked together by Ross Wightman
|
|
Copyright 2020 Ross Wightman
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from functools import partial
|
|
from math import ceil
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
from .helpers import build_model_with_cfg, checkpoint_seq
|
|
from .layers import ClassifierHead, create_act_layer, ConvNormAct, DropPath, make_divisible, SEModule
|
|
from .registry import register_model
|
|
from .efficientnet_builder import efficientnet_init_weights
|
|
|
|
|
|
def _cfg(url=''):
|
|
return {
|
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
'first_conv': 'stem.conv', 'classifier': 'head.fc',
|
|
}
|
|
|
|
|
|
default_cfgs = dict(
|
|
rexnet_100=_cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_100-1b4dddf4.pth'),
|
|
rexnet_130=_cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_130-590d768e.pth'),
|
|
rexnet_150=_cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_150-bd1a6aa8.pth'),
|
|
rexnet_200=_cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_200-8c0b7f2d.pth'),
|
|
rexnetr_100=_cfg(
|
|
url=''),
|
|
rexnetr_130=_cfg(
|
|
url=''),
|
|
rexnetr_150=_cfg(
|
|
url=''),
|
|
rexnetr_200=_cfg(
|
|
url=''),
|
|
)
|
|
|
|
SEWithNorm = partial(SEModule, norm_layer=nn.BatchNorm2d)
|
|
|
|
|
|
class LinearBottleneck(nn.Module):
|
|
def __init__(
|
|
self, in_chs, out_chs, stride, exp_ratio=1.0, se_ratio=0., ch_div=1,
|
|
act_layer='swish', dw_act_layer='relu6', drop_path=None):
|
|
super(LinearBottleneck, self).__init__()
|
|
self.use_shortcut = stride == 1 and in_chs <= out_chs
|
|
self.in_channels = in_chs
|
|
self.out_channels = out_chs
|
|
|
|
if exp_ratio != 1.:
|
|
dw_chs = make_divisible(round(in_chs * exp_ratio), divisor=ch_div)
|
|
self.conv_exp = ConvNormAct(in_chs, dw_chs, act_layer=act_layer)
|
|
else:
|
|
dw_chs = in_chs
|
|
self.conv_exp = None
|
|
|
|
self.conv_dw = ConvNormAct(dw_chs, dw_chs, 3, stride=stride, groups=dw_chs, apply_act=False)
|
|
if se_ratio > 0:
|
|
self.se = SEWithNorm(dw_chs, rd_channels=make_divisible(int(dw_chs * se_ratio), ch_div))
|
|
else:
|
|
self.se = None
|
|
self.act_dw = create_act_layer(dw_act_layer)
|
|
|
|
self.conv_pwl = ConvNormAct(dw_chs, out_chs, 1, apply_act=False)
|
|
self.drop_path = drop_path
|
|
|
|
def feat_channels(self, exp=False):
|
|
return self.conv_dw.out_channels if exp else self.out_channels
|
|
|
|
def forward(self, x):
|
|
shortcut = x
|
|
if self.conv_exp is not None:
|
|
x = self.conv_exp(x)
|
|
x = self.conv_dw(x)
|
|
if self.se is not None:
|
|
x = self.se(x)
|
|
x = self.act_dw(x)
|
|
x = self.conv_pwl(x)
|
|
if self.use_shortcut:
|
|
if self.drop_path is not None:
|
|
x = self.drop_path(x)
|
|
x = torch.cat([x[:, 0:self.in_channels] + shortcut, x[:, self.in_channels:]], dim=1)
|
|
return x
|
|
|
|
|
|
def _block_cfg(width_mult=1.0, depth_mult=1.0, initial_chs=16, final_chs=180, se_ratio=0., ch_div=1):
|
|
layers = [1, 2, 2, 3, 3, 5]
|
|
strides = [1, 2, 2, 2, 1, 2]
|
|
layers = [ceil(element * depth_mult) for element in layers]
|
|
strides = sum([[element] + [1] * (layers[idx] - 1) for idx, element in enumerate(strides)], [])
|
|
exp_ratios = [1] * layers[0] + [6] * sum(layers[1:])
|
|
depth = sum(layers[:]) * 3
|
|
base_chs = initial_chs / width_mult if width_mult < 1.0 else initial_chs
|
|
|
|
# The following channel configuration is a simple instance to make each layer become an expand layer.
|
|
out_chs_list = []
|
|
for i in range(depth // 3):
|
|
out_chs_list.append(make_divisible(round(base_chs * width_mult), divisor=ch_div))
|
|
base_chs += final_chs / (depth // 3 * 1.0)
|
|
|
|
se_ratios = [0.] * (layers[0] + layers[1]) + [se_ratio] * sum(layers[2:])
|
|
|
|
return list(zip(out_chs_list, exp_ratios, strides, se_ratios))
|
|
|
|
|
|
def _build_blocks(
|
|
block_cfg, prev_chs, width_mult, ch_div=1, act_layer='swish', dw_act_layer='relu6', drop_path_rate=0.):
|
|
feat_chs = [prev_chs]
|
|
feature_info = []
|
|
curr_stride = 2
|
|
features = []
|
|
num_blocks = len(block_cfg)
|
|
for block_idx, (chs, exp_ratio, stride, se_ratio) in enumerate(block_cfg):
|
|
if stride > 1:
|
|
fname = 'stem' if block_idx == 0 else f'features.{block_idx - 1}'
|
|
feature_info += [dict(num_chs=feat_chs[-1], reduction=curr_stride, module=fname)]
|
|
curr_stride *= stride
|
|
block_dpr = drop_path_rate * block_idx / (num_blocks - 1) # stochastic depth linear decay rule
|
|
drop_path = DropPath(block_dpr) if block_dpr > 0. else None
|
|
features.append(LinearBottleneck(
|
|
in_chs=prev_chs, out_chs=chs, exp_ratio=exp_ratio, stride=stride, se_ratio=se_ratio,
|
|
ch_div=ch_div, act_layer=act_layer, dw_act_layer=dw_act_layer, drop_path=drop_path))
|
|
prev_chs = chs
|
|
feat_chs += [features[-1].feat_channels()]
|
|
pen_chs = make_divisible(1280 * width_mult, divisor=ch_div)
|
|
feature_info += [dict(num_chs=feat_chs[-1], reduction=curr_stride, module=f'features.{len(features) - 1}')]
|
|
features.append(ConvNormAct(prev_chs, pen_chs, act_layer=act_layer))
|
|
return features, feature_info
|
|
|
|
|
|
class ReXNetV1(nn.Module):
|
|
def __init__(
|
|
self, in_chans=3, num_classes=1000, global_pool='avg', output_stride=32,
|
|
initial_chs=16, final_chs=180, width_mult=1.0, depth_mult=1.0, se_ratio=1/12.,
|
|
ch_div=1, act_layer='swish', dw_act_layer='relu6', drop_rate=0.2, drop_path_rate=0.
|
|
):
|
|
super(ReXNetV1, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.drop_rate = drop_rate
|
|
self.grad_checkpointing = False
|
|
|
|
assert output_stride == 32 # FIXME support dilation
|
|
stem_base_chs = 32 / width_mult if width_mult < 1.0 else 32
|
|
stem_chs = make_divisible(round(stem_base_chs * width_mult), divisor=ch_div)
|
|
self.stem = ConvNormAct(in_chans, stem_chs, 3, stride=2, act_layer=act_layer)
|
|
|
|
block_cfg = _block_cfg(width_mult, depth_mult, initial_chs, final_chs, se_ratio, ch_div)
|
|
features, self.feature_info = _build_blocks(
|
|
block_cfg, stem_chs, width_mult, ch_div, act_layer, dw_act_layer, drop_path_rate)
|
|
self.num_features = features[-1].out_channels
|
|
self.features = nn.Sequential(*features)
|
|
|
|
self.head = ClassifierHead(self.num_features, num_classes, global_pool, drop_rate)
|
|
|
|
efficientnet_init_weights(self)
|
|
|
|
@torch.jit.ignore
|
|
def group_matcher(self, coarse=False):
|
|
matcher = dict(
|
|
stem=r'^stem',
|
|
blocks=r'^features\.(\d+)',
|
|
)
|
|
return matcher
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable=True):
|
|
self.grad_checkpointing = enable
|
|
|
|
@torch.jit.ignore
|
|
def get_classifier(self):
|
|
return self.head.fc
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
|
|
|
|
def forward_features(self, x):
|
|
x = self.stem(x)
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
x = checkpoint_seq(self.features, x, flatten=True)
|
|
else:
|
|
x = self.features(x)
|
|
return x
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
return self.head(x, pre_logits=pre_logits)
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x
|
|
|
|
|
|
def _create_rexnet(variant, pretrained, **kwargs):
|
|
feature_cfg = dict(flatten_sequential=True)
|
|
return build_model_with_cfg(
|
|
ReXNetV1, variant, pretrained,
|
|
feature_cfg=feature_cfg,
|
|
**kwargs)
|
|
|
|
|
|
@register_model
|
|
def rexnet_100(pretrained=False, **kwargs):
|
|
"""ReXNet V1 1.0x"""
|
|
return _create_rexnet('rexnet_100', pretrained, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def rexnet_130(pretrained=False, **kwargs):
|
|
"""ReXNet V1 1.3x"""
|
|
return _create_rexnet('rexnet_130', pretrained, width_mult=1.3, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def rexnet_150(pretrained=False, **kwargs):
|
|
"""ReXNet V1 1.5x"""
|
|
return _create_rexnet('rexnet_150', pretrained, width_mult=1.5, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def rexnet_200(pretrained=False, **kwargs):
|
|
"""ReXNet V1 2.0x"""
|
|
return _create_rexnet('rexnet_200', pretrained, width_mult=2.0, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def rexnetr_100(pretrained=False, **kwargs):
|
|
"""ReXNet V1 1.0x w/ rounded (mod 8) channels"""
|
|
return _create_rexnet('rexnetr_100', pretrained, ch_div=8, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def rexnetr_130(pretrained=False, **kwargs):
|
|
"""ReXNet V1 1.3x w/ rounded (mod 8) channels"""
|
|
return _create_rexnet('rexnetr_130', pretrained, width_mult=1.3, ch_div=8, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def rexnetr_150(pretrained=False, **kwargs):
|
|
"""ReXNet V1 1.5x w/ rounded (mod 8) channels"""
|
|
return _create_rexnet('rexnetr_150', pretrained, width_mult=1.5, ch_div=8, **kwargs)
|
|
|
|
|
|
@register_model
|
|
def rexnetr_200(pretrained=False, **kwargs):
|
|
"""ReXNet V1 2.0x w/ rounded (mod 8) channels"""
|
|
return _create_rexnet('rexnetr_200', pretrained, width_mult=2.0, ch_div=8, **kwargs)
|