You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
479 lines
18 KiB
479 lines
18 KiB
""" Inception-V3
|
|
|
|
Originally from torchvision Inception3 model
|
|
Licensed BSD-Clause 3 https://github.com/pytorch/vision/blob/master/LICENSE
|
|
"""
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
|
from timm.layers import trunc_normal_, create_classifier, Linear
|
|
from ._builder import build_model_with_cfg
|
|
from ._builder import resolve_pretrained_cfg
|
|
from ._manipulate import flatten_modules
|
|
from ._registry import register_model
|
|
|
|
__all__ = ['InceptionV3', 'InceptionV3Aux'] # model_registry will add each entrypoint fn to this
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url,
|
|
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8),
|
|
'crop_pct': 0.875, 'interpolation': 'bicubic',
|
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
|
'first_conv': 'Conv2d_1a_3x3.conv', 'classifier': 'fc',
|
|
**kwargs
|
|
}
|
|
|
|
|
|
default_cfgs = {
|
|
# original PyTorch weights, ported from Tensorflow but modified
|
|
'inception_v3': _cfg(
|
|
# NOTE checkpoint has aux logit layer weights
|
|
url='https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth'),
|
|
# my port of Tensorflow SLIM weights (http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz)
|
|
'tf_inception_v3': _cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_inception_v3-e0069de4.pth',
|
|
num_classes=1000, label_offset=1),
|
|
# my port of Tensorflow adversarially trained Inception V3 from
|
|
# http://download.tensorflow.org/models/adv_inception_v3_2017_08_18.tar.gz
|
|
'adv_inception_v3': _cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/adv_inception_v3-9e27bd63.pth',
|
|
num_classes=1000, label_offset=1),
|
|
# from gluon pretrained models, best performing in terms of accuracy/loss metrics
|
|
# https://gluon-cv.mxnet.io/model_zoo/classification.html
|
|
'gluon_inception_v3': _cfg(
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_inception_v3-9f746940.pth',
|
|
mean=IMAGENET_DEFAULT_MEAN, # also works well with inception defaults
|
|
std=IMAGENET_DEFAULT_STD, # also works well with inception defaults
|
|
)
|
|
}
|
|
|
|
|
|
class InceptionA(nn.Module):
|
|
|
|
def __init__(self, in_channels, pool_features, conv_block=None):
|
|
super(InceptionA, self).__init__()
|
|
if conv_block is None:
|
|
conv_block = BasicConv2d
|
|
self.branch1x1 = conv_block(in_channels, 64, kernel_size=1)
|
|
|
|
self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1)
|
|
self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2)
|
|
|
|
self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
|
|
self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
|
|
self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1)
|
|
|
|
self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)
|
|
|
|
def _forward(self, x):
|
|
branch1x1 = self.branch1x1(x)
|
|
|
|
branch5x5 = self.branch5x5_1(x)
|
|
branch5x5 = self.branch5x5_2(branch5x5)
|
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x)
|
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
|
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
|
|
branch_pool = self.branch_pool(branch_pool)
|
|
|
|
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
|
|
return outputs
|
|
|
|
def forward(self, x):
|
|
outputs = self._forward(x)
|
|
return torch.cat(outputs, 1)
|
|
|
|
|
|
class InceptionB(nn.Module):
|
|
|
|
def __init__(self, in_channels, conv_block=None):
|
|
super(InceptionB, self).__init__()
|
|
if conv_block is None:
|
|
conv_block = BasicConv2d
|
|
self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)
|
|
|
|
self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
|
|
self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
|
|
self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)
|
|
|
|
def _forward(self, x):
|
|
branch3x3 = self.branch3x3(x)
|
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x)
|
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
|
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
|
|
|
|
branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
|
|
|
|
outputs = [branch3x3, branch3x3dbl, branch_pool]
|
|
return outputs
|
|
|
|
def forward(self, x):
|
|
outputs = self._forward(x)
|
|
return torch.cat(outputs, 1)
|
|
|
|
|
|
class InceptionC(nn.Module):
|
|
|
|
def __init__(self, in_channels, channels_7x7, conv_block=None):
|
|
super(InceptionC, self).__init__()
|
|
if conv_block is None:
|
|
conv_block = BasicConv2d
|
|
self.branch1x1 = conv_block(in_channels, 192, kernel_size=1)
|
|
|
|
c7 = channels_7x7
|
|
self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1)
|
|
self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
|
|
self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0))
|
|
|
|
self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1)
|
|
self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
|
|
self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
|
|
self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
|
|
self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3))
|
|
|
|
self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
|
|
|
|
def _forward(self, x):
|
|
branch1x1 = self.branch1x1(x)
|
|
|
|
branch7x7 = self.branch7x7_1(x)
|
|
branch7x7 = self.branch7x7_2(branch7x7)
|
|
branch7x7 = self.branch7x7_3(branch7x7)
|
|
|
|
branch7x7dbl = self.branch7x7dbl_1(x)
|
|
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
|
|
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
|
|
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
|
|
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
|
|
branch_pool = self.branch_pool(branch_pool)
|
|
|
|
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
|
|
return outputs
|
|
|
|
def forward(self, x):
|
|
outputs = self._forward(x)
|
|
return torch.cat(outputs, 1)
|
|
|
|
|
|
class InceptionD(nn.Module):
|
|
|
|
def __init__(self, in_channels, conv_block=None):
|
|
super(InceptionD, self).__init__()
|
|
if conv_block is None:
|
|
conv_block = BasicConv2d
|
|
self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1)
|
|
self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2)
|
|
|
|
self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1)
|
|
self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3))
|
|
self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0))
|
|
self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)
|
|
|
|
def _forward(self, x):
|
|
branch3x3 = self.branch3x3_1(x)
|
|
branch3x3 = self.branch3x3_2(branch3x3)
|
|
|
|
branch7x7x3 = self.branch7x7x3_1(x)
|
|
branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
|
|
branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
|
|
branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
|
|
|
|
branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
|
|
outputs = [branch3x3, branch7x7x3, branch_pool]
|
|
return outputs
|
|
|
|
def forward(self, x):
|
|
outputs = self._forward(x)
|
|
return torch.cat(outputs, 1)
|
|
|
|
|
|
class InceptionE(nn.Module):
|
|
|
|
def __init__(self, in_channels, conv_block=None):
|
|
super(InceptionE, self).__init__()
|
|
if conv_block is None:
|
|
conv_block = BasicConv2d
|
|
self.branch1x1 = conv_block(in_channels, 320, kernel_size=1)
|
|
|
|
self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1)
|
|
self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
|
|
self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
|
|
|
|
self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1)
|
|
self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1)
|
|
self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
|
|
self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
|
|
|
|
self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
|
|
|
|
def _forward(self, x):
|
|
branch1x1 = self.branch1x1(x)
|
|
|
|
branch3x3 = self.branch3x3_1(x)
|
|
branch3x3 = [
|
|
self.branch3x3_2a(branch3x3),
|
|
self.branch3x3_2b(branch3x3),
|
|
]
|
|
branch3x3 = torch.cat(branch3x3, 1)
|
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x)
|
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
|
branch3x3dbl = [
|
|
self.branch3x3dbl_3a(branch3x3dbl),
|
|
self.branch3x3dbl_3b(branch3x3dbl),
|
|
]
|
|
branch3x3dbl = torch.cat(branch3x3dbl, 1)
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
|
|
branch_pool = self.branch_pool(branch_pool)
|
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
|
|
return outputs
|
|
|
|
def forward(self, x):
|
|
outputs = self._forward(x)
|
|
return torch.cat(outputs, 1)
|
|
|
|
|
|
class InceptionAux(nn.Module):
|
|
|
|
def __init__(self, in_channels, num_classes, conv_block=None):
|
|
super(InceptionAux, self).__init__()
|
|
if conv_block is None:
|
|
conv_block = BasicConv2d
|
|
self.conv0 = conv_block(in_channels, 128, kernel_size=1)
|
|
self.conv1 = conv_block(128, 768, kernel_size=5)
|
|
self.conv1.stddev = 0.01
|
|
self.fc = Linear(768, num_classes)
|
|
self.fc.stddev = 0.001
|
|
|
|
def forward(self, x):
|
|
# N x 768 x 17 x 17
|
|
x = F.avg_pool2d(x, kernel_size=5, stride=3)
|
|
# N x 768 x 5 x 5
|
|
x = self.conv0(x)
|
|
# N x 128 x 5 x 5
|
|
x = self.conv1(x)
|
|
# N x 768 x 1 x 1
|
|
# Adaptive average pooling
|
|
x = F.adaptive_avg_pool2d(x, (1, 1))
|
|
# N x 768 x 1 x 1
|
|
x = torch.flatten(x, 1)
|
|
# N x 768
|
|
x = self.fc(x)
|
|
# N x 1000
|
|
return x
|
|
|
|
|
|
class BasicConv2d(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels, **kwargs):
|
|
super(BasicConv2d, self).__init__()
|
|
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
|
|
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
return F.relu(x, inplace=True)
|
|
|
|
|
|
class InceptionV3(nn.Module):
|
|
"""Inception-V3 with no AuxLogits
|
|
FIXME two class defs are redundant, but less screwing around with torchsript fussyness and inconsistent returns
|
|
"""
|
|
|
|
def __init__(self, num_classes=1000, in_chans=3, drop_rate=0., global_pool='avg', aux_logits=False):
|
|
super(InceptionV3, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.drop_rate = drop_rate
|
|
self.aux_logits = aux_logits
|
|
|
|
self.Conv2d_1a_3x3 = BasicConv2d(in_chans, 32, kernel_size=3, stride=2)
|
|
self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3)
|
|
self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1)
|
|
self.Pool1 = nn.MaxPool2d(kernel_size=3, stride=2)
|
|
self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1)
|
|
self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=3)
|
|
self.Pool2 = nn.MaxPool2d(kernel_size=3, stride=2)
|
|
self.Mixed_5b = InceptionA(192, pool_features=32)
|
|
self.Mixed_5c = InceptionA(256, pool_features=64)
|
|
self.Mixed_5d = InceptionA(288, pool_features=64)
|
|
self.Mixed_6a = InceptionB(288)
|
|
self.Mixed_6b = InceptionC(768, channels_7x7=128)
|
|
self.Mixed_6c = InceptionC(768, channels_7x7=160)
|
|
self.Mixed_6d = InceptionC(768, channels_7x7=160)
|
|
self.Mixed_6e = InceptionC(768, channels_7x7=192)
|
|
if aux_logits:
|
|
self.AuxLogits = InceptionAux(768, num_classes)
|
|
else:
|
|
self.AuxLogits = None
|
|
self.Mixed_7a = InceptionD(768)
|
|
self.Mixed_7b = InceptionE(1280)
|
|
self.Mixed_7c = InceptionE(2048)
|
|
self.feature_info = [
|
|
dict(num_chs=64, reduction=2, module='Conv2d_2b_3x3'),
|
|
dict(num_chs=192, reduction=4, module='Conv2d_4a_3x3'),
|
|
dict(num_chs=288, reduction=8, module='Mixed_5d'),
|
|
dict(num_chs=768, reduction=16, module='Mixed_6e'),
|
|
dict(num_chs=2048, reduction=32, module='Mixed_7c'),
|
|
]
|
|
|
|
self.num_features = 2048
|
|
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
|
|
stddev = m.stddev if hasattr(m, 'stddev') else 0.1
|
|
trunc_normal_(m.weight, std=stddev)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
@torch.jit.ignore
|
|
def group_matcher(self, coarse=False):
|
|
module_map = {k: i for i, (k, _) in enumerate(flatten_modules(self.named_children(), prefix=()))}
|
|
module_map.pop(('fc',))
|
|
|
|
def _matcher(name):
|
|
if any([name.startswith(n) for n in ('Conv2d_1', 'Conv2d_2')]):
|
|
return 0
|
|
elif any([name.startswith(n) for n in ('Conv2d_3', 'Conv2d_4')]):
|
|
return 1
|
|
else:
|
|
for k in module_map.keys():
|
|
if k == tuple(name.split('.')[:len(k)]):
|
|
return module_map[k]
|
|
return float('inf')
|
|
return _matcher
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable=True):
|
|
assert not enable, 'gradient checkpointing not supported'
|
|
|
|
@torch.jit.ignore
|
|
def get_classifier(self):
|
|
return self.fc
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
self.num_classes = num_classes
|
|
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
|
|
|
|
def forward_preaux(self, x):
|
|
x = self.Conv2d_1a_3x3(x) # N x 32 x 149 x 149
|
|
x = self.Conv2d_2a_3x3(x) # N x 32 x 147 x 147
|
|
x = self.Conv2d_2b_3x3(x) # N x 64 x 147 x 147
|
|
x = self.Pool1(x) # N x 64 x 73 x 73
|
|
x = self.Conv2d_3b_1x1(x) # N x 80 x 73 x 73
|
|
x = self.Conv2d_4a_3x3(x) # N x 192 x 71 x 71
|
|
x = self.Pool2(x) # N x 192 x 35 x 35
|
|
x = self.Mixed_5b(x) # N x 256 x 35 x 35
|
|
x = self.Mixed_5c(x) # N x 288 x 35 x 35
|
|
x = self.Mixed_5d(x) # N x 288 x 35 x 35
|
|
x = self.Mixed_6a(x) # N x 768 x 17 x 17
|
|
x = self.Mixed_6b(x) # N x 768 x 17 x 17
|
|
x = self.Mixed_6c(x) # N x 768 x 17 x 17
|
|
x = self.Mixed_6d(x) # N x 768 x 17 x 17
|
|
x = self.Mixed_6e(x) # N x 768 x 17 x 17
|
|
return x
|
|
|
|
def forward_postaux(self, x):
|
|
x = self.Mixed_7a(x) # N x 1280 x 8 x 8
|
|
x = self.Mixed_7b(x) # N x 2048 x 8 x 8
|
|
x = self.Mixed_7c(x) # N x 2048 x 8 x 8
|
|
return x
|
|
|
|
def forward_features(self, x):
|
|
x = self.forward_preaux(x)
|
|
x = self.forward_postaux(x)
|
|
return x
|
|
|
|
def forward_head(self, x):
|
|
x = self.global_pool(x)
|
|
if self.drop_rate > 0:
|
|
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x
|
|
|
|
|
|
class InceptionV3Aux(InceptionV3):
|
|
"""InceptionV3 with AuxLogits
|
|
"""
|
|
|
|
def __init__(self, num_classes=1000, in_chans=3, drop_rate=0., global_pool='avg', aux_logits=True):
|
|
super(InceptionV3Aux, self).__init__(
|
|
num_classes, in_chans, drop_rate, global_pool, aux_logits)
|
|
|
|
def forward_features(self, x):
|
|
x = self.forward_preaux(x)
|
|
aux = self.AuxLogits(x) if self.training else None
|
|
x = self.forward_postaux(x)
|
|
return x, aux
|
|
|
|
def forward(self, x):
|
|
x, aux = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x, aux
|
|
|
|
|
|
def _create_inception_v3(variant, pretrained=False, **kwargs):
|
|
pretrained_cfg = resolve_pretrained_cfg(variant, pretrained_cfg=kwargs.pop('pretrained_cfg', None))
|
|
aux_logits = kwargs.pop('aux_logits', False)
|
|
if aux_logits:
|
|
assert not kwargs.pop('features_only', False)
|
|
model_cls = InceptionV3Aux
|
|
load_strict = variant == 'inception_v3'
|
|
else:
|
|
model_cls = InceptionV3
|
|
load_strict = variant != 'inception_v3'
|
|
|
|
return build_model_with_cfg(
|
|
model_cls, variant, pretrained,
|
|
pretrained_cfg=pretrained_cfg,
|
|
pretrained_strict=load_strict,
|
|
**kwargs)
|
|
|
|
|
|
@register_model
|
|
def inception_v3(pretrained=False, **kwargs):
|
|
# original PyTorch weights, ported from Tensorflow but modified
|
|
model = _create_inception_v3('inception_v3', pretrained=pretrained, **kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def tf_inception_v3(pretrained=False, **kwargs):
|
|
# my port of Tensorflow SLIM weights (http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz)
|
|
model = _create_inception_v3('tf_inception_v3', pretrained=pretrained, **kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def adv_inception_v3(pretrained=False, **kwargs):
|
|
# my port of Tensorflow adversarially trained Inception V3 from
|
|
# http://download.tensorflow.org/models/adv_inception_v3_2017_08_18.tar.gz
|
|
model = _create_inception_v3('adv_inception_v3', pretrained=pretrained, **kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def gluon_inception_v3(pretrained=False, **kwargs):
|
|
# from gluon pretrained models, best performing in terms of accuracy/loss metrics
|
|
# https://gluon-cv.mxnet.io/model_zoo/classification.html
|
|
model = _create_inception_v3('gluon_inception_v3', pretrained=pretrained, **kwargs)
|
|
return model
|