You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
733 lines
24 KiB
733 lines
24 KiB
""" EfficientFormer-V2
|
|
|
|
@article{
|
|
li2022rethinking,
|
|
title={Rethinking Vision Transformers for MobileNet Size and Speed},
|
|
author={Li, Yanyu and Hu, Ju and Wen, Yang and Evangelidis, Georgios and Salahi, Kamyar and Wang, Yanzhi and Tulyakov, Sergey and Ren, Jian},
|
|
journal={arXiv preprint arXiv:2212.08059},
|
|
year={2022}
|
|
}
|
|
|
|
Significantly refactored and cleaned up for timm from original at: https://github.com/snap-research/EfficientFormer
|
|
|
|
Original code licensed Apache 2.0, Copyright (c) 2022 Snap Inc.
|
|
|
|
Modifications and timm support by / Copyright 2023, Ross Wightman
|
|
"""
|
|
import math
|
|
from functools import partial
|
|
from typing import Dict
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
from timm.layers import create_conv2d, create_norm_layer, get_act_layer, get_norm_layer, ConvNormAct
|
|
from timm.layers import DropPath, trunc_normal_, to_2tuple, to_ntuple
|
|
from ._builder import build_model_with_cfg
|
|
from ._manipulate import checkpoint_seq
|
|
from ._pretrained import generate_default_cfgs
|
|
from ._registry import register_model
|
|
|
|
|
|
EfficientFormer_width = {
|
|
'L': (40, 80, 192, 384), # 26m 83.3% 6attn
|
|
'S2': (32, 64, 144, 288), # 12m 81.6% 4attn dp0.02
|
|
'S1': (32, 48, 120, 224), # 6.1m 79.0
|
|
'S0': (32, 48, 96, 176), # 75.0 75.7
|
|
}
|
|
|
|
EfficientFormer_depth = {
|
|
'L': (5, 5, 15, 10), # 26m 83.3%
|
|
'S2': (4, 4, 12, 8), # 12m
|
|
'S1': (3, 3, 9, 6), # 79.0
|
|
'S0': (2, 2, 6, 4), # 75.7
|
|
}
|
|
|
|
EfficientFormer_expansion_ratios = {
|
|
'L': (4, 4, (4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4), (4, 4, 4, 3, 3, 3, 3, 4, 4, 4)),
|
|
'S2': (4, 4, (4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4), (4, 4, 3, 3, 3, 3, 4, 4)),
|
|
'S1': (4, 4, (4, 4, 3, 3, 3, 3, 4, 4, 4), (4, 4, 3, 3, 4, 4)),
|
|
'S0': (4, 4, (4, 3, 3, 3, 4, 4), (4, 3, 3, 4)),
|
|
}
|
|
|
|
|
|
class ConvNorm(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding='',
|
|
dilation=1,
|
|
groups=1,
|
|
bias=True,
|
|
norm_layer='batchnorm2d',
|
|
norm_kwargs=None,
|
|
):
|
|
norm_kwargs = norm_kwargs or {}
|
|
super(ConvNorm, self).__init__()
|
|
self.conv = create_conv2d(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
bias=bias,
|
|
)
|
|
self.bn = create_norm_layer(norm_layer, out_channels, **norm_kwargs)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
return x
|
|
|
|
|
|
class Attention2d(torch.nn.Module):
|
|
attention_bias_cache: Dict[str, torch.Tensor]
|
|
|
|
def __init__(
|
|
self,
|
|
dim=384,
|
|
key_dim=32,
|
|
num_heads=8,
|
|
attn_ratio=4,
|
|
resolution=7,
|
|
act_layer=nn.GELU,
|
|
stride=None,
|
|
):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.scale = key_dim ** -0.5
|
|
self.key_dim = key_dim
|
|
|
|
resolution = to_2tuple(resolution)
|
|
if stride is not None:
|
|
resolution = tuple([math.ceil(r / stride) for r in resolution])
|
|
self.stride_conv = ConvNorm(dim, dim, kernel_size=3, stride=stride, groups=dim)
|
|
self.upsample = nn.Upsample(scale_factor=stride, mode='bilinear')
|
|
else:
|
|
self.stride_conv = None
|
|
self.upsample = None
|
|
|
|
self.resolution = resolution
|
|
self.N = self.resolution[0] * self.resolution[1]
|
|
self.d = int(attn_ratio * key_dim)
|
|
self.dh = int(attn_ratio * key_dim) * num_heads
|
|
self.attn_ratio = attn_ratio
|
|
kh = self.key_dim * self.num_heads
|
|
|
|
self.q = ConvNorm(dim, kh)
|
|
self.k = ConvNorm(dim, kh)
|
|
self.v = ConvNorm(dim, self.dh)
|
|
self.v_local = ConvNorm(self.dh, self.dh, kernel_size=3, groups=self.dh)
|
|
self.talking_head1 = nn.Conv2d(self.num_heads, self.num_heads, kernel_size=1)
|
|
self.talking_head2 = nn.Conv2d(self.num_heads, self.num_heads, kernel_size=1)
|
|
|
|
self.act = act_layer()
|
|
self.proj = ConvNorm(self.dh, dim, 1)
|
|
|
|
pos = torch.stack(torch.meshgrid(torch.arange(self.resolution[0]), torch.arange(self.resolution[1]))).flatten(1)
|
|
rel_pos = (pos[..., :, None] - pos[..., None, :]).abs()
|
|
rel_pos = (rel_pos[0] * self.resolution[1]) + rel_pos[1]
|
|
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, self.N))
|
|
self.register_buffer('attention_bias_idxs', torch.LongTensor(rel_pos), persistent=False)
|
|
self.attention_bias_cache = {} # per-device attention_biases cache (data-parallel compat)
|
|
|
|
@torch.no_grad()
|
|
def train(self, mode=True):
|
|
super().train(mode)
|
|
if mode and self.attention_bias_cache:
|
|
self.attention_bias_cache = {} # clear ab cache
|
|
|
|
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
|
|
if torch.jit.is_tracing() or self.training:
|
|
return self.attention_biases[:, self.attention_bias_idxs]
|
|
else:
|
|
device_key = str(device)
|
|
if device_key not in self.attention_bias_cache:
|
|
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
|
|
return self.attention_bias_cache[device_key]
|
|
|
|
def forward(self, x):
|
|
B, C, H, W = x.shape
|
|
if self.stride_conv is not None:
|
|
x = self.stride_conv(x)
|
|
|
|
q = self.q(x).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)
|
|
k = self.k(x).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3)
|
|
v = self.v(x)
|
|
v_local = self.v_local(v)
|
|
v = v.reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)
|
|
|
|
attn = (q @ k) * self.scale
|
|
attn = attn + self.get_attention_biases(x.device)
|
|
attn = self.talking_head1(attn)
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.talking_head2(attn)
|
|
|
|
x = (attn @ v).transpose(2, 3)
|
|
x = x.reshape(B, self.dh, self.resolution[0], self.resolution[1]) + v_local
|
|
if self.upsample is not None:
|
|
x = self.upsample(x)
|
|
|
|
x = self.act(x)
|
|
x = self.proj(x)
|
|
return x
|
|
|
|
|
|
class LocalGlobalQuery(torch.nn.Module):
|
|
def __init__(self, in_dim, out_dim):
|
|
super().__init__()
|
|
self.pool = nn.AvgPool2d(1, 2, 0)
|
|
self.local = nn.Conv2d(in_dim, in_dim, kernel_size=3, stride=2, padding=1, groups=in_dim)
|
|
self.proj = ConvNorm(in_dim, out_dim, 1)
|
|
|
|
def forward(self, x):
|
|
local_q = self.local(x)
|
|
pool_q = self.pool(x)
|
|
q = local_q + pool_q
|
|
q = self.proj(q)
|
|
return q
|
|
|
|
|
|
class Attention2dDownsample(torch.nn.Module):
|
|
attention_bias_cache: Dict[str, torch.Tensor]
|
|
|
|
def __init__(
|
|
self,
|
|
dim=384,
|
|
key_dim=16,
|
|
num_heads=8,
|
|
attn_ratio=4,
|
|
resolution=7,
|
|
out_dim=None,
|
|
act_layer=nn.GELU,
|
|
):
|
|
super().__init__()
|
|
|
|
self.num_heads = num_heads
|
|
self.scale = key_dim ** -0.5
|
|
self.key_dim = key_dim
|
|
self.resolution = to_2tuple(resolution)
|
|
self.resolution2 = tuple([math.ceil(r / 2) for r in self.resolution])
|
|
self.N = self.resolution[0] * self.resolution[1]
|
|
self.N2 = self.resolution2[0] * self.resolution2[1]
|
|
|
|
self.d = int(attn_ratio * key_dim)
|
|
self.dh = int(attn_ratio * key_dim) * num_heads
|
|
self.attn_ratio = attn_ratio
|
|
self.out_dim = out_dim or dim
|
|
kh = self.key_dim * self.num_heads
|
|
|
|
self.q = LocalGlobalQuery(dim, kh)
|
|
self.k = ConvNorm(dim, kh, 1)
|
|
self.v = ConvNorm(dim, self.dh, 1)
|
|
self.v_local = ConvNorm(self.dh, self.dh, kernel_size=3, stride=2, groups=self.dh)
|
|
|
|
self.act = act_layer()
|
|
self.proj = ConvNorm(self.dh, self.out_dim, 1)
|
|
|
|
self.attention_biases = nn.Parameter(torch.zeros(num_heads, self.N))
|
|
k_pos = torch.stack(torch.meshgrid(torch.arange(
|
|
self.resolution[1]),
|
|
torch.arange(self.resolution[1]))).flatten(1)
|
|
q_pos = torch.stack(torch.meshgrid(
|
|
torch.arange(0, self.resolution[0], step=2),
|
|
torch.arange(0, self.resolution[1], step=2))).flatten(1)
|
|
rel_pos = (q_pos[..., :, None] - k_pos[..., None, :]).abs()
|
|
rel_pos = (rel_pos[0] * self.resolution[1]) + rel_pos[1]
|
|
self.register_buffer('attention_bias_idxs', rel_pos, persistent=False)
|
|
self.attention_bias_cache = {} # per-device attention_biases cache (data-parallel compat)
|
|
|
|
@torch.no_grad()
|
|
def train(self, mode=True):
|
|
super().train(mode)
|
|
if mode and self.attention_bias_cache:
|
|
self.attention_bias_cache = {} # clear ab cache
|
|
|
|
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
|
|
if torch.jit.is_tracing() or self.training:
|
|
return self.attention_biases[:, self.attention_bias_idxs]
|
|
else:
|
|
device_key = str(device)
|
|
if device_key not in self.attention_bias_cache:
|
|
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
|
|
return self.attention_bias_cache[device_key]
|
|
|
|
def forward(self, x):
|
|
B, C, H, W = x.shape
|
|
|
|
q = self.q(x).reshape(B, self.num_heads, -1, self.N2).permute(0, 1, 3, 2)
|
|
k = self.k(x).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3)
|
|
v = self.v(x)
|
|
v_local = self.v_local(v)
|
|
v = v.reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)
|
|
|
|
attn = (q @ k) * self.scale
|
|
attn = attn + self.get_attention_biases(x.device)
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
x = (attn @ v).transpose(2, 3)
|
|
x = x.reshape(B, self.dh, self.resolution2[0], self.resolution2[1]) + v_local
|
|
x = self.act(x)
|
|
x = self.proj(x)
|
|
return x
|
|
|
|
|
|
class Downsample(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_chs,
|
|
out_chs,
|
|
kernel_size=3,
|
|
stride=2,
|
|
padding=1,
|
|
resolution=7,
|
|
use_attn=False,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.BatchNorm2d,
|
|
):
|
|
super().__init__()
|
|
|
|
kernel_size = to_2tuple(kernel_size)
|
|
stride = to_2tuple(stride)
|
|
padding = to_2tuple(padding)
|
|
norm_layer = norm_layer or nn.Identity()
|
|
self.conv = ConvNorm(
|
|
in_chs,
|
|
out_chs,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
norm_layer=norm_layer,
|
|
)
|
|
|
|
if use_attn:
|
|
self.attn = Attention2dDownsample(
|
|
dim=in_chs,
|
|
out_dim=out_chs,
|
|
resolution=resolution,
|
|
act_layer=act_layer,
|
|
)
|
|
else:
|
|
self.attn = None
|
|
|
|
def forward(self, x):
|
|
out = self.conv(x)
|
|
if self.attn is not None:
|
|
return self.attn(x) + out
|
|
return out
|
|
|
|
|
|
class ConvMlpWithNorm(nn.Module):
|
|
"""
|
|
Implementation of MLP with 1*1 convolutions.
|
|
Input: tensor with shape [B, C, H, W]
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
hidden_features=None,
|
|
out_features=None,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.BatchNorm2d,
|
|
drop=0.,
|
|
mid_conv=False,
|
|
):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = ConvNormAct(
|
|
in_features, hidden_features, 1, bias=True, norm_layer=norm_layer, act_layer=act_layer)
|
|
if mid_conv:
|
|
self.mid = ConvNormAct(
|
|
hidden_features, hidden_features, 3,
|
|
groups=hidden_features, bias=True, norm_layer=norm_layer, act_layer=act_layer)
|
|
else:
|
|
self.mid = nn.Identity()
|
|
self.drop1 = nn.Dropout(drop)
|
|
self.fc2 = ConvNorm(hidden_features, out_features, 1, norm_layer=norm_layer)
|
|
self.drop2 = nn.Dropout(drop)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.mid(x)
|
|
x = self.drop1(x)
|
|
x = self.fc2(x)
|
|
x = self.drop2(x)
|
|
return x
|
|
|
|
|
|
class LayerScale2d(nn.Module):
|
|
def __init__(self, dim, init_values=1e-5, inplace=False):
|
|
super().__init__()
|
|
self.inplace = inplace
|
|
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
|
|
|
def forward(self, x):
|
|
gamma = self.gamma.view(1, -1, 1, 1)
|
|
return x.mul_(gamma) if self.inplace else x * gamma
|
|
|
|
|
|
class EfficientFormerV2Block(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
mlp_ratio=4.,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.BatchNorm2d,
|
|
drop=0.,
|
|
drop_path=0.,
|
|
layer_scale_init_value=1e-5,
|
|
resolution=7,
|
|
stride=None,
|
|
use_attn=True,
|
|
):
|
|
super().__init__()
|
|
|
|
if use_attn:
|
|
self.token_mixer = Attention2d(
|
|
dim,
|
|
resolution=resolution,
|
|
act_layer=act_layer,
|
|
stride=stride,
|
|
)
|
|
self.ls1 = LayerScale2d(
|
|
dim, layer_scale_init_value) if layer_scale_init_value is not None else nn.Identity()
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
else:
|
|
self.token_mixer = None
|
|
self.ls1 = None
|
|
self.drop_path1 = None
|
|
|
|
self.mlp = ConvMlpWithNorm(
|
|
in_features=dim,
|
|
hidden_features=int(dim * mlp_ratio),
|
|
act_layer=act_layer,
|
|
norm_layer=norm_layer,
|
|
drop=drop,
|
|
mid_conv=True,
|
|
)
|
|
self.ls2 = LayerScale2d(
|
|
dim, layer_scale_init_value) if layer_scale_init_value is not None else nn.Identity()
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
if self.token_mixer is not None:
|
|
x = x + self.drop_path1(self.ls1(self.token_mixer(x)))
|
|
x = x + self.drop_path2(self.ls2(self.mlp(x)))
|
|
return x
|
|
|
|
|
|
class Stem4(nn.Sequential):
|
|
def __init__(self, in_chs, out_chs, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d):
|
|
super().__init__()
|
|
self.stride = 4
|
|
self.conv1 = ConvNormAct(
|
|
in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1, bias=True,
|
|
norm_layer=norm_layer, act_layer=act_layer
|
|
)
|
|
self.conv2 = ConvNormAct(
|
|
out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1, bias=True,
|
|
norm_layer=norm_layer, act_layer=act_layer
|
|
)
|
|
|
|
|
|
class EfficientFormerV2Stage(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
dim_out,
|
|
depth,
|
|
resolution=7,
|
|
downsample=True,
|
|
block_stride=None,
|
|
downsample_use_attn=False,
|
|
block_use_attn=False,
|
|
num_vit=1,
|
|
mlp_ratio=4.,
|
|
drop=.0,
|
|
drop_path=0.,
|
|
layer_scale_init_value=1e-5,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.BatchNorm2d,
|
|
|
|
):
|
|
super().__init__()
|
|
self.grad_checkpointing = False
|
|
mlp_ratio = to_ntuple(depth)(mlp_ratio)
|
|
resolution = to_2tuple(resolution)
|
|
|
|
if downsample:
|
|
self.downsample = Downsample(
|
|
dim,
|
|
dim_out,
|
|
use_attn=downsample_use_attn,
|
|
resolution=resolution,
|
|
norm_layer=norm_layer,
|
|
act_layer=act_layer,
|
|
)
|
|
dim = dim_out
|
|
resolution = tuple([math.ceil(r / 2) for r in resolution])
|
|
else:
|
|
assert dim == dim_out
|
|
self.downsample = nn.Identity()
|
|
|
|
blocks = []
|
|
for block_idx in range(depth):
|
|
remain_idx = depth - num_vit - 1
|
|
b = EfficientFormerV2Block(
|
|
dim,
|
|
resolution=resolution,
|
|
stride=block_stride,
|
|
mlp_ratio=mlp_ratio[block_idx],
|
|
use_attn=block_use_attn and block_idx > remain_idx,
|
|
drop=drop,
|
|
drop_path=drop_path[block_idx],
|
|
layer_scale_init_value=layer_scale_init_value,
|
|
act_layer=act_layer,
|
|
norm_layer=norm_layer,
|
|
)
|
|
blocks += [b]
|
|
self.blocks = nn.Sequential(*blocks)
|
|
|
|
def forward(self, x):
|
|
x = self.downsample(x)
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
x = checkpoint_seq(self.blocks, x)
|
|
else:
|
|
x = self.blocks(x)
|
|
return x
|
|
|
|
|
|
class EfficientFormerV2(nn.Module):
|
|
def __init__(
|
|
self,
|
|
depths,
|
|
in_chans=3,
|
|
img_size=224,
|
|
global_pool='avg',
|
|
embed_dims=None,
|
|
downsamples=None,
|
|
mlp_ratios=4,
|
|
norm_layer='batchnorm2d',
|
|
norm_eps=1e-5,
|
|
act_layer='gelu',
|
|
num_classes=1000,
|
|
drop_rate=0.,
|
|
drop_path_rate=0.,
|
|
layer_scale_init_value=1e-5,
|
|
num_vit=0,
|
|
distillation=True,
|
|
):
|
|
super().__init__()
|
|
assert global_pool in ('avg', '')
|
|
self.num_classes = num_classes
|
|
self.global_pool = global_pool
|
|
self.feature_info = []
|
|
img_size = to_2tuple(img_size)
|
|
norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps)
|
|
act_layer = get_act_layer(act_layer)
|
|
|
|
self.stem = Stem4(in_chans, embed_dims[0], act_layer=act_layer, norm_layer=norm_layer)
|
|
prev_dim = embed_dims[0]
|
|
stride = 4
|
|
|
|
num_stages = len(depths)
|
|
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
|
|
downsamples = downsamples or (False,) + (True,) * (len(depths) - 1)
|
|
mlp_ratios = to_ntuple(num_stages)(mlp_ratios)
|
|
stages = []
|
|
for i in range(num_stages):
|
|
curr_resolution = tuple([math.ceil(s / stride) for s in img_size])
|
|
stage = EfficientFormerV2Stage(
|
|
prev_dim,
|
|
embed_dims[i],
|
|
depth=depths[i],
|
|
resolution=curr_resolution,
|
|
downsample=downsamples[i],
|
|
block_stride=2 if i == 2 else None,
|
|
downsample_use_attn=i >= 3,
|
|
block_use_attn=i >= 2,
|
|
num_vit=num_vit,
|
|
mlp_ratio=mlp_ratios[i],
|
|
drop=drop_rate,
|
|
drop_path=dpr[i],
|
|
layer_scale_init_value=layer_scale_init_value,
|
|
act_layer=act_layer,
|
|
norm_layer=norm_layer,
|
|
)
|
|
if downsamples[i]:
|
|
stride *= 2
|
|
prev_dim = embed_dims[i]
|
|
self.feature_info += [dict(num_chs=prev_dim, reduction=stride, module=f'stages.{i}')]
|
|
stages.append(stage)
|
|
self.stages = nn.Sequential(*stages)
|
|
|
|
# Classifier head
|
|
self.num_features = embed_dims[-1]
|
|
self.norm = norm_layer(embed_dims[-1])
|
|
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
|
|
self.dist = distillation
|
|
if self.dist:
|
|
self.head_dist = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
|
|
else:
|
|
self.head_dist = None
|
|
|
|
self.apply(self.init_weights)
|
|
self.distilled_training = False
|
|
|
|
# init for classification
|
|
def init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {k for k, _ in self.named_parameters() if 'attention_biases' in k}
|
|
|
|
@torch.jit.ignore
|
|
def group_matcher(self, coarse=False):
|
|
matcher = dict(
|
|
stem=r'^stem', # stem and embed
|
|
blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))]
|
|
)
|
|
return matcher
|
|
|
|
@torch.jit.ignore
|
|
def set_grad_checkpointing(self, enable=True):
|
|
for s in self.stages:
|
|
s.grad_checkpointing = enable
|
|
|
|
@torch.jit.ignore
|
|
def get_classifier(self):
|
|
return self.head, self.head_dist
|
|
|
|
def reset_classifier(self, num_classes, global_pool=None):
|
|
self.num_classes = num_classes
|
|
if global_pool is not None:
|
|
self.global_pool = global_pool
|
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
|
self.head_dist = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
@torch.jit.ignore
|
|
def set_distilled_training(self, enable=True):
|
|
self.distilled_training = enable
|
|
|
|
def forward_features(self, x):
|
|
x = self.stem(x)
|
|
x = self.stages(x)
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
if self.global_pool == 'avg':
|
|
x = x.mean(dim=(2, 3))
|
|
if pre_logits:
|
|
return x
|
|
x, x_dist = self.head(x), self.head_dist(x)
|
|
if self.distilled_training and self.training and not torch.jit.is_scripting():
|
|
# only return separate classification predictions when training in distilled mode
|
|
return x, x_dist
|
|
else:
|
|
# during standard train/finetune, inference average the classifier predictions
|
|
return (x + x_dist) / 2
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
return x
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
return {
|
|
'url': url,
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True,
|
|
'crop_pct': .95, 'interpolation': 'bicubic',
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
'classifier': ('head', 'head_dist'), 'first_conv': 'stem.conv1.conv',
|
|
**kwargs
|
|
}
|
|
|
|
|
|
default_cfgs = generate_default_cfgs({
|
|
'efficientformerv2_s0.snap_dist_in1k': _cfg(
|
|
hf_hub_id='timm/',
|
|
),
|
|
'efficientformerv2_s1.snap_dist_in1k': _cfg(
|
|
hf_hub_id='timm/',
|
|
),
|
|
'efficientformerv2_s2.snap_dist_in1k': _cfg(
|
|
hf_hub_id='timm/',
|
|
),
|
|
'efficientformerv2_l.snap_dist_in1k': _cfg(
|
|
hf_hub_id='timm/',
|
|
),
|
|
})
|
|
|
|
|
|
def _create_efficientformerv2(variant, pretrained=False, **kwargs):
|
|
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3))
|
|
model = build_model_with_cfg(
|
|
EfficientFormerV2, variant, pretrained,
|
|
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
|
|
**kwargs)
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def efficientformerv2_s0(pretrained=False, **kwargs):
|
|
model_args = dict(
|
|
depths=EfficientFormer_depth['S0'],
|
|
embed_dims=EfficientFormer_width['S0'],
|
|
num_vit=2,
|
|
drop_path_rate=0.0,
|
|
mlp_ratios=EfficientFormer_expansion_ratios['S0'],
|
|
)
|
|
return _create_efficientformerv2('efficientformerv2_s0', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def efficientformerv2_s1(pretrained=False, **kwargs):
|
|
model_args = dict(
|
|
depths=EfficientFormer_depth['S1'],
|
|
embed_dims=EfficientFormer_width['S1'],
|
|
num_vit=2,
|
|
drop_path_rate=0.0,
|
|
mlp_ratios=EfficientFormer_expansion_ratios['S1'],
|
|
)
|
|
return _create_efficientformerv2('efficientformerv2_s1', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def efficientformerv2_s2(pretrained=False, **kwargs):
|
|
model_args = dict(
|
|
depths=EfficientFormer_depth['S2'],
|
|
embed_dims=EfficientFormer_width['S2'],
|
|
num_vit=4,
|
|
drop_path_rate=0.02,
|
|
mlp_ratios=EfficientFormer_expansion_ratios['S2'],
|
|
)
|
|
return _create_efficientformerv2('efficientformerv2_s2', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
|
|
|
|
@register_model
|
|
def efficientformerv2_l(pretrained=False, **kwargs):
|
|
model_args = dict(
|
|
depths=EfficientFormer_depth['L'],
|
|
embed_dims=EfficientFormer_width['L'],
|
|
num_vit=6,
|
|
drop_path_rate=0.1,
|
|
mlp_ratios=EfficientFormer_expansion_ratios['L'],
|
|
)
|
|
return _create_efficientformerv2('efficientformerv2_l', pretrained=pretrained, **dict(model_args, **kwargs))
|
|
|