425 lines
13 KiB

# HRNet
**HRNet**, or **High-Resolution Net**, is a general purpose convolutional neural network for tasks like semantic segmentation, object detection and image classification. It is able to maintain high resolution representations through the whole process. We start from a high-resolution convolution stream, gradually add high-to-low resolution convolution streams one by one, and connect the multi-resolution streams in parallel. The resulting network consists of several ($4$ in the paper) stages and the $n$th stage contains $n$ streams corresponding to $n$ resolutions. The authors conduct repeated multi-resolution fusions by exchanging the information across the parallel streams over and over.
## How do I use this model on an image?
To load a pretrained model:
```py
>>> import timm
>>> model = timm.create_model('hrnet_w18', pretrained=True)
>>> model.eval()
```
To load and preprocess the image:
```py
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform
>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)
>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```py
>>> import torch
>>> with torch.no_grad():
... out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
... categories = [s.strip() for s in f.readlines()]
>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
... print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `hrnet_w18`. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```py
>>> model = timm.create_model('hrnet_w18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
## Citation
```BibTeX
@misc{sun2019highresolution,
title={High-Resolution Representations for Labeling Pixels and Regions},
author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang},
year={2019},
eprint={1904.04514},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Type: model-index
Collections:
- Name: HRNet
Paper:
Title: Deep High-Resolution Representation Learning for Visual Recognition
URL: https://paperswithcode.com/paper/190807919
Models:
- Name: hrnet_w18
In Collection: HRNet
Metadata:
FLOPs: 5547205500
Parameters: 21300000
File Size: 85718883
Architecture:
- Batch Normalization
- Convolution
- ReLU
- Residual Connection
Tasks:
- Image Classification
Training Techniques:
- Nesterov Accelerated Gradient
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x NVIDIA V100 GPUs
ID: hrnet_w18
Epochs: 100
Layers: 18
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 256
Image Size: '224'
Weight Decay: 0.001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L800
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w18-8cb57bb9.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 76.76%
Top 5 Accuracy: 93.44%
- Name: hrnet_w18_small
In Collection: HRNet
Metadata:
FLOPs: 2071651488
Parameters: 13190000
File Size: 52934302
Architecture:
- Batch Normalization
- Convolution
- ReLU
- Residual Connection
Tasks:
- Image Classification
Training Techniques:
- Nesterov Accelerated Gradient
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x NVIDIA V100 GPUs
ID: hrnet_w18_small
Epochs: 100
Layers: 18
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 256
Image Size: '224'
Weight Decay: 0.001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L790
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v1-f460c6bc.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 72.34%
Top 5 Accuracy: 90.68%
- Name: hrnet_w18_small_v2
In Collection: HRNet
Metadata:
FLOPs: 3360023160
Parameters: 15600000
File Size: 62682879
Architecture:
- Batch Normalization
- Convolution
- ReLU
- Residual Connection
Tasks:
- Image Classification
Training Techniques:
- Nesterov Accelerated Gradient
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x NVIDIA V100 GPUs
ID: hrnet_w18_small_v2
Epochs: 100
Layers: 18
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 256
Image Size: '224'
Weight Decay: 0.001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L795
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v2-4c50a8cb.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 75.11%
Top 5 Accuracy: 92.41%
- Name: hrnet_w30
In Collection: HRNet
Metadata:
FLOPs: 10474119492
Parameters: 37710000
File Size: 151452218
Architecture:
- Batch Normalization
- Convolution
- ReLU
- Residual Connection
Tasks:
- Image Classification
Training Techniques:
- Nesterov Accelerated Gradient
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x NVIDIA V100 GPUs
ID: hrnet_w30
Epochs: 100
Layers: 30
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 256
Image Size: '224'
Weight Decay: 0.001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L805
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w30-8d7f8dab.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.21%
Top 5 Accuracy: 94.22%
- Name: hrnet_w32
In Collection: HRNet
Metadata:
FLOPs: 11524528320
Parameters: 41230000
File Size: 165547812
Architecture:
- Batch Normalization
- Convolution
- ReLU
- Residual Connection
Tasks:
- Image Classification
Training Techniques:
- Nesterov Accelerated Gradient
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x NVIDIA V100 GPUs
Training Time: 60 hours
ID: hrnet_w32
Epochs: 100
Layers: 32
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 256
Image Size: '224'
Weight Decay: 0.001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L810
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w32-90d8c5fb.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.45%
Top 5 Accuracy: 94.19%
- Name: hrnet_w40
In Collection: HRNet
Metadata:
FLOPs: 16381182192
Parameters: 57560000
File Size: 230899236
Architecture:
- Batch Normalization
- Convolution
- ReLU
- Residual Connection
Tasks:
- Image Classification
Training Techniques:
- Nesterov Accelerated Gradient
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x NVIDIA V100 GPUs
ID: hrnet_w40
Epochs: 100
Layers: 40
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 256
Image Size: '224'
Weight Decay: 0.001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L815
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w40-7cd397a4.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.93%
Top 5 Accuracy: 94.48%
- Name: hrnet_w44
In Collection: HRNet
Metadata:
FLOPs: 19202520264
Parameters: 67060000
File Size: 268957432
Architecture:
- Batch Normalization
- Convolution
- ReLU
- Residual Connection
Tasks:
- Image Classification
Training Techniques:
- Nesterov Accelerated Gradient
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x NVIDIA V100 GPUs
ID: hrnet_w44
Epochs: 100
Layers: 44
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 256
Image Size: '224'
Weight Decay: 0.001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L820
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w44-c9ac8c18.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.89%
Top 5 Accuracy: 94.37%
- Name: hrnet_w48
In Collection: HRNet
Metadata:
FLOPs: 22285865760
Parameters: 77470000
File Size: 310603710
Architecture:
- Batch Normalization
- Convolution
- ReLU
- Residual Connection
Tasks:
- Image Classification
Training Techniques:
- Nesterov Accelerated Gradient
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x NVIDIA V100 GPUs
Training Time: 80 hours
ID: hrnet_w48
Epochs: 100
Layers: 48
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 256
Image Size: '224'
Weight Decay: 0.001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L825
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w48-abd2e6ab.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.32%
Top 5 Accuracy: 94.51%
- Name: hrnet_w64
In Collection: HRNet
Metadata:
FLOPs: 37239321984
Parameters: 128060000
File Size: 513071818
Architecture:
- Batch Normalization
- Convolution
- ReLU
- Residual Connection
Tasks:
- Image Classification
Training Techniques:
- Nesterov Accelerated Gradient
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x NVIDIA V100 GPUs
ID: hrnet_w64
Epochs: 100
Layers: 64
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 256
Image Size: '224'
Weight Decay: 0.001
Interpolation: bilinear
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L830
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w64-b47cc881.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.46%
Top 5 Accuracy: 94.65%
-->