You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2002 lines
52 KiB
2002 lines
52 KiB
|
|
<!doctype html>
|
|
<html lang="en" class="no-js">
|
|
<head>
|
|
|
|
<meta charset="utf-8">
|
|
<meta name="viewport" content="width=device-width,initial-scale=1">
|
|
|
|
<meta name="description" content="Pretained Image Recognition Models">
|
|
|
|
|
|
|
|
|
|
<link rel="prev" href="../gloun-inception-v3/">
|
|
|
|
|
|
<link rel="next" href="../gloun-resnext/">
|
|
|
|
<link rel="icon" href="../../assets/images/favicon.png">
|
|
<meta name="generator" content="mkdocs-1.4.2, mkdocs-material-9.0.2">
|
|
|
|
|
|
|
|
<title>(Gluon) ResNet - Pytorch Image Models</title>
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../../assets/stylesheets/main.f56500e0.min.css">
|
|
|
|
|
|
<link rel="stylesheet" href="../../assets/stylesheets/palette.2505c338.min.css">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
|
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CRoboto+Mono:400,400i,700,700i&display=fallback">
|
|
<style>:root{--md-text-font:"Roboto";--md-code-font:"Roboto Mono"}</style>
|
|
|
|
|
|
|
|
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</head>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="" data-md-color-accent="">
|
|
|
|
|
|
|
|
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
|
|
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
|
|
<label class="md-overlay" for="__drawer"></label>
|
|
<div data-md-component="skip">
|
|
|
|
|
|
<a href="#gluon-resnet" class="md-skip">
|
|
Skip to content
|
|
</a>
|
|
|
|
</div>
|
|
<div data-md-component="announce">
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<header class="md-header" data-md-component="header">
|
|
<nav class="md-header__inner md-grid" aria-label="Header">
|
|
<a href="../.." title="Pytorch Image Models" class="md-header__button md-logo" aria-label="Pytorch Image Models" data-md-component="logo">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 8a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3 3 3 0 0 0 3 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54Z"/></svg>
|
|
|
|
</a>
|
|
<label class="md-header__button md-icon" for="__drawer">
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
|
|
</label>
|
|
<div class="md-header__title" data-md-component="header-title">
|
|
<div class="md-header__ellipsis">
|
|
<div class="md-header__topic">
|
|
<span class="md-ellipsis">
|
|
Pytorch Image Models
|
|
</span>
|
|
</div>
|
|
<div class="md-header__topic" data-md-component="header-topic">
|
|
<span class="md-ellipsis">
|
|
|
|
(Gluon) ResNet
|
|
|
|
</span>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<label class="md-header__button md-icon" for="__search">
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
|
|
</label>
|
|
<div class="md-search" data-md-component="search" role="dialog">
|
|
<label class="md-search__overlay" for="__search"></label>
|
|
<div class="md-search__inner" role="search">
|
|
<form class="md-search__form" name="search">
|
|
<input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
|
|
<label class="md-search__icon md-icon" for="__search">
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
|
|
</label>
|
|
<nav class="md-search__options" aria-label="Search">
|
|
|
|
<button type="reset" class="md-search__icon md-icon" title="Clear" aria-label="Clear" tabindex="-1">
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
|
|
</button>
|
|
</nav>
|
|
|
|
</form>
|
|
<div class="md-search__output">
|
|
<div class="md-search__scrollwrap" data-md-scrollfix>
|
|
<div class="md-search-result" data-md-component="search-result">
|
|
<div class="md-search-result__meta">
|
|
Initializing search
|
|
</div>
|
|
<ol class="md-search-result__list"></ol>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div class="md-header__source">
|
|
<a href="https://github.com/rwightman/pytorch-image-models" title="Go to repository" class="md-source" data-md-component="source">
|
|
<div class="md-source__icon md-icon">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--! Font Awesome Free 6.2.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2022 Fonticons, Inc.--><path d="M439.55 236.05 244 40.45a28.87 28.87 0 0 0-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 0 1-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 0 0 0 40.81l195.61 195.6a28.86 28.86 0 0 0 40.8 0l194.69-194.69a28.86 28.86 0 0 0 0-40.81z"/></svg>
|
|
</div>
|
|
<div class="md-source__repository">
|
|
rwightman/pytorch-image-models
|
|
</div>
|
|
</a>
|
|
</div>
|
|
|
|
</nav>
|
|
|
|
</header>
|
|
|
|
<div class="md-container" data-md-component="container">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<main class="md-main" data-md-component="main">
|
|
<div class="md-main__inner md-grid">
|
|
|
|
|
|
|
|
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
|
|
<div class="md-sidebar__scrollwrap">
|
|
<div class="md-sidebar__inner">
|
|
|
|
|
|
|
|
<nav class="md-nav md-nav--primary" aria-label="Navigation" data-md-level="0">
|
|
<label class="md-nav__title" for="__drawer">
|
|
<a href="../.." title="Pytorch Image Models" class="md-nav__button md-logo" aria-label="Pytorch Image Models" data-md-component="logo">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 8a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3 3 3 0 0 0 3 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54Z"/></svg>
|
|
|
|
</a>
|
|
Pytorch Image Models
|
|
</label>
|
|
|
|
<div class="md-nav__source">
|
|
<a href="https://github.com/rwightman/pytorch-image-models" title="Go to repository" class="md-source" data-md-component="source">
|
|
<div class="md-source__icon md-icon">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--! Font Awesome Free 6.2.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2022 Fonticons, Inc.--><path d="M439.55 236.05 244 40.45a28.87 28.87 0 0 0-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 0 1-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 0 0 0 40.81l195.61 195.6a28.86 28.86 0 0 0 40.8 0l194.69-194.69a28.86 28.86 0 0 0 0-40.81z"/></svg>
|
|
</div>
|
|
<div class="md-source__repository">
|
|
rwightman/pytorch-image-models
|
|
</div>
|
|
</a>
|
|
</div>
|
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../.." class="md-nav__link">
|
|
Getting Started
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../" class="md-nav__link">
|
|
Model Summaries
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle" data-md-toggle="__nav_3" type="checkbox" id="__nav_3" checked>
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__link" for="__nav_3">
|
|
Model Pages
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
<nav class="md-nav" aria-label="Model Pages" data-md-level="1">
|
|
<label class="md-nav__title" for="__nav_3">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Model Pages
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../adversarial-inception-v3/" class="md-nav__link">
|
|
Adversarial Inception v3
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../advprop/" class="md-nav__link">
|
|
AdvProp (EfficientNet)
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../big-transfer/" class="md-nav__link">
|
|
Big Transfer (BiT)
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../csp-darknet/" class="md-nav__link">
|
|
CSP-DarkNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../csp-resnet/" class="md-nav__link">
|
|
CSP-ResNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../csp-resnext/" class="md-nav__link">
|
|
CSP-ResNeXt
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../densenet/" class="md-nav__link">
|
|
DenseNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../dla/" class="md-nav__link">
|
|
Deep Layer Aggregation
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../dpn/" class="md-nav__link">
|
|
Dual Path Network (DPN)
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../ecaresnet/" class="md-nav__link">
|
|
ECA-ResNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../efficientnet-pruned/" class="md-nav__link">
|
|
EfficientNet (Knapsack Pruned)
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../efficientnet/" class="md-nav__link">
|
|
EfficientNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../ensemble-adversarial/" class="md-nav__link">
|
|
Ensemble Adversarial Inception ResNet v2
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../ese-vovnet/" class="md-nav__link">
|
|
ESE-VoVNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../fbnet/" class="md-nav__link">
|
|
FBNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../gloun-inception-v3/" class="md-nav__link">
|
|
(Gluon) Inception v3
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--active">
|
|
|
|
<input class="md-nav__toggle md-toggle" data-md-toggle="toc" type="checkbox" id="__toc">
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__link md-nav__link--active" for="__toc">
|
|
(Gluon) ResNet
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
<a href="./" class="md-nav__link md-nav__link--active">
|
|
(Gluon) ResNet
|
|
</a>
|
|
|
|
|
|
|
|
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__title" for="__toc">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Table of contents
|
|
</label>
|
|
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#how-do-i-use-this-model-on-an-image" class="md-nav__link">
|
|
How do I use this model on an image?
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#how-do-i-finetune-this-model" class="md-nav__link">
|
|
How do I finetune this model?
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#how-do-i-train-this-model" class="md-nav__link">
|
|
How do I train this model?
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#citation" class="md-nav__link">
|
|
Citation
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../gloun-resnext/" class="md-nav__link">
|
|
(Gluon) ResNeXt
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../gloun-senet/" class="md-nav__link">
|
|
(Gluon) SENet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../gloun-seresnext/" class="md-nav__link">
|
|
(Gluon) SE-ResNeXt
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../gloun-xception/" class="md-nav__link">
|
|
(Gluon) Xception
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../hrnet/" class="md-nav__link">
|
|
HRNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../ig-resnext/" class="md-nav__link">
|
|
Instagram ResNeXt WSL
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../inception-resnet-v2/" class="md-nav__link">
|
|
Inception ResNet v2
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../inception-v3/" class="md-nav__link">
|
|
Inception v3
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../inception-v4/" class="md-nav__link">
|
|
Inception v4
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../legacy-se-resnet/" class="md-nav__link">
|
|
(Legacy) SE-ResNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../legacy-se-resnext/" class="md-nav__link">
|
|
(Legacy) SE-ResNeXt
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../legacy-senet/" class="md-nav__link">
|
|
(Legacy) SENet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../mixnet/" class="md-nav__link">
|
|
MixNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../mnasnet/" class="md-nav__link">
|
|
MnasNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../mobilenet-v2/" class="md-nav__link">
|
|
MobileNet v2
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../mobilenet-v3/" class="md-nav__link">
|
|
MobileNet v3
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../nasnet/" class="md-nav__link">
|
|
NASNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../noisy-student/" class="md-nav__link">
|
|
Noisy Student (EfficientNet)
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../pnasnet/" class="md-nav__link">
|
|
PNASNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../regnetx/" class="md-nav__link">
|
|
RegNetX
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../regnety/" class="md-nav__link">
|
|
RegNetY
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../res2net/" class="md-nav__link">
|
|
Res2Net
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../res2next/" class="md-nav__link">
|
|
Res2NeXt
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../resnest/" class="md-nav__link">
|
|
ResNeSt
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../resnet-d/" class="md-nav__link">
|
|
ResNet-D
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../resnet/" class="md-nav__link">
|
|
ResNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../resnext/" class="md-nav__link">
|
|
ResNeXt
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../rexnet/" class="md-nav__link">
|
|
RexNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../se-resnet/" class="md-nav__link">
|
|
SE-ResNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../selecsls/" class="md-nav__link">
|
|
SelecSLS
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../seresnext/" class="md-nav__link">
|
|
SE-ResNeXt
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../skresnet/" class="md-nav__link">
|
|
SK-ResNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../skresnext/" class="md-nav__link">
|
|
SK-ResNeXt
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../spnasnet/" class="md-nav__link">
|
|
SPNASNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../ssl-resnet/" class="md-nav__link">
|
|
SSL ResNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../ssl-resnext/" class="md-nav__link">
|
|
SSL ResNeXT
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../swsl-resnet/" class="md-nav__link">
|
|
SWSL ResNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../swsl-resnext/" class="md-nav__link">
|
|
SWSL ResNeXt
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../tf-efficientnet-condconv/" class="md-nav__link">
|
|
(Tensorflow) EfficientNet CondConv
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../tf-efficientnet-lite/" class="md-nav__link">
|
|
(Tensorflow) EfficientNet Lite
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../tf-efficientnet/" class="md-nav__link">
|
|
(Tensorflow) EfficientNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../tf-inception-v3/" class="md-nav__link">
|
|
(Tensorflow) Inception v3
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../tf-mixnet/" class="md-nav__link">
|
|
(Tensorflow) MixNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../tf-mobilenet-v3/" class="md-nav__link">
|
|
(Tensorflow) MobileNet v3
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../tresnet/" class="md-nav__link">
|
|
TResNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../vision-transformer/" class="md-nav__link">
|
|
Vision Transformer (ViT)
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../wide-resnet/" class="md-nav__link">
|
|
Wide ResNet
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../xception/" class="md-nav__link">
|
|
Xception
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../results/" class="md-nav__link">
|
|
Results
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../scripts/" class="md-nav__link">
|
|
Scripts
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../training_hparam_examples/" class="md-nav__link">
|
|
Training Examples
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../feature_extraction/" class="md-nav__link">
|
|
Feature Extraction
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../changes/" class="md-nav__link">
|
|
Recent Changes
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../archived_changes/" class="md-nav__link">
|
|
Archived Changes
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
|
|
<div class="md-sidebar__scrollwrap">
|
|
<div class="md-sidebar__inner">
|
|
|
|
|
|
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__title" for="__toc">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Table of contents
|
|
</label>
|
|
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#how-do-i-use-this-model-on-an-image" class="md-nav__link">
|
|
How do I use this model on an image?
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#how-do-i-finetune-this-model" class="md-nav__link">
|
|
How do I finetune this model?
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#how-do-i-train-this-model" class="md-nav__link">
|
|
How do I train this model?
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#citation" class="md-nav__link">
|
|
Citation
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
|
|
</nav>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="md-content" data-md-component="content">
|
|
<article class="md-content__inner md-typeset">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<h1 id="gluon-resnet">(Gluon) ResNet</h1>
|
|
<p><strong>Residual Networks</strong>, or <strong>ResNets</strong>, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack <a href="https://paperswithcode.com/method/residual-block">residual blocks</a> ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. </p>
|
|
<p>The weights from this model were ported from <a href="https://cv.gluon.ai/model_zoo/classification.html">Gluon</a>.</p>
|
|
<h2 id="how-do-i-use-this-model-on-an-image">How do I use this model on an image?</h2>
|
|
<p>To load a pretrained model:</p>
|
|
<div class="highlight"><pre><span></span><code><span class="kn">import</span> <span class="nn">timm</span>
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">timm</span><span class="o">.</span><span class="n">create_model</span><span class="p">(</span><span class="s1">'gluon_resnet101_v1b'</span><span class="p">,</span> <span class="n">pretrained</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
|
<span class="n">model</span><span class="o">.</span><span class="n">eval</span><span class="p">()</span>
|
|
</code></pre></div>
|
|
<p>To load and preprocess the image:
|
|
<div class="highlight"><pre><span></span><code><span class="kn">import</span> <span class="nn">urllib</span>
|
|
<span class="kn">from</span> <span class="nn">PIL</span> <span class="kn">import</span> <span class="n">Image</span>
|
|
<span class="kn">from</span> <span class="nn">timm.data</span> <span class="kn">import</span> <span class="n">resolve_data_config</span>
|
|
<span class="kn">from</span> <span class="nn">timm.data.transforms_factory</span> <span class="kn">import</span> <span class="n">create_transform</span>
|
|
|
|
<span class="n">config</span> <span class="o">=</span> <span class="n">resolve_data_config</span><span class="p">({},</span> <span class="n">model</span><span class="o">=</span><span class="n">model</span><span class="p">)</span>
|
|
<span class="n">transform</span> <span class="o">=</span> <span class="n">create_transform</span><span class="p">(</span><span class="o">**</span><span class="n">config</span><span class="p">)</span>
|
|
|
|
<span class="n">url</span><span class="p">,</span> <span class="n">filename</span> <span class="o">=</span> <span class="p">(</span><span class="s2">"https://github.com/pytorch/hub/raw/master/images/dog.jpg"</span><span class="p">,</span> <span class="s2">"dog.jpg"</span><span class="p">)</span>
|
|
<span class="n">urllib</span><span class="o">.</span><span class="n">request</span><span class="o">.</span><span class="n">urlretrieve</span><span class="p">(</span><span class="n">url</span><span class="p">,</span> <span class="n">filename</span><span class="p">)</span>
|
|
<span class="n">img</span> <span class="o">=</span> <span class="n">Image</span><span class="o">.</span><span class="n">open</span><span class="p">(</span><span class="n">filename</span><span class="p">)</span><span class="o">.</span><span class="n">convert</span><span class="p">(</span><span class="s1">'RGB'</span><span class="p">)</span>
|
|
<span class="n">tensor</span> <span class="o">=</span> <span class="n">transform</span><span class="p">(</span><span class="n">img</span><span class="p">)</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># transform and add batch dimension</span>
|
|
</code></pre></div></p>
|
|
<p>To get the model predictions:
|
|
<div class="highlight"><pre><span></span><code><span class="kn">import</span> <span class="nn">torch</span>
|
|
<span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span>
|
|
<span class="n">out</span> <span class="o">=</span> <span class="n">model</span><span class="p">(</span><span class="n">tensor</span><span class="p">)</span>
|
|
<span class="n">probabilities</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">functional</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">out</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="n">probabilities</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
|
|
<span class="c1"># prints: torch.Size([1000])</span>
|
|
</code></pre></div></p>
|
|
<p>To get the top-5 predictions class names:
|
|
<div class="highlight"><pre><span></span><code><span class="c1"># Get imagenet class mappings</span>
|
|
<span class="n">url</span><span class="p">,</span> <span class="n">filename</span> <span class="o">=</span> <span class="p">(</span><span class="s2">"https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt"</span><span class="p">,</span> <span class="s2">"imagenet_classes.txt"</span><span class="p">)</span>
|
|
<span class="n">urllib</span><span class="o">.</span><span class="n">request</span><span class="o">.</span><span class="n">urlretrieve</span><span class="p">(</span><span class="n">url</span><span class="p">,</span> <span class="n">filename</span><span class="p">)</span>
|
|
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="s2">"imagenet_classes.txt"</span><span class="p">,</span> <span class="s2">"r"</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
|
|
<span class="n">categories</span> <span class="o">=</span> <span class="p">[</span><span class="n">s</span><span class="o">.</span><span class="n">strip</span><span class="p">()</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">f</span><span class="o">.</span><span class="n">readlines</span><span class="p">()]</span>
|
|
|
|
<span class="c1"># Print top categories per image</span>
|
|
<span class="n">top5_prob</span><span class="p">,</span> <span class="n">top5_catid</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">topk</span><span class="p">(</span><span class="n">probabilities</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
|
|
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">top5_prob</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">)):</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="n">categories</span><span class="p">[</span><span class="n">top5_catid</span><span class="p">[</span><span class="n">i</span><span class="p">]],</span> <span class="n">top5_prob</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">item</span><span class="p">())</span>
|
|
<span class="c1"># prints class names and probabilities like:</span>
|
|
<span class="c1"># [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]</span>
|
|
</code></pre></div></p>
|
|
<p>Replace the model name with the variant you want to use, e.g. <code>gluon_resnet101_v1b</code>. You can find the IDs in the model summaries at the top of this page.</p>
|
|
<p>To extract image features with this model, follow the <a href="https://rwightman.github.io/pytorch-image-models/feature_extraction/">timm feature extraction examples</a>, just change the name of the model you want to use.</p>
|
|
<h2 id="how-do-i-finetune-this-model">How do I finetune this model?</h2>
|
|
<p>You can finetune any of the pre-trained models just by changing the classifier (the last layer).
|
|
<div class="highlight"><pre><span></span><code><span class="n">model</span> <span class="o">=</span> <span class="n">timm</span><span class="o">.</span><span class="n">create_model</span><span class="p">(</span><span class="s1">'gluon_resnet101_v1b'</span><span class="p">,</span> <span class="n">pretrained</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="n">NUM_FINETUNE_CLASSES</span><span class="p">)</span>
|
|
</code></pre></div>
|
|
To finetune on your own dataset, you have to write a training loop or adapt <a href="https://github.com/rwightman/pytorch-image-models/blob/master/train.py">timm's training
|
|
script</a> to use your dataset.</p>
|
|
<h2 id="how-do-i-train-this-model">How do I train this model?</h2>
|
|
<p>You can follow the <a href="https://rwightman.github.io/pytorch-image-models/scripts/">timm recipe scripts</a> for training a new model afresh.</p>
|
|
<h2 id="citation">Citation</h2>
|
|
<div class="highlight"><pre><span></span><code><span class="nc">@article</span><span class="p">{</span><span class="nl">DBLP:journals/corr/HeZRS15</span><span class="p">,</span>
|
|
<span class="w"> </span><span class="na">author</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{Kaiming He and</span>
|
|
<span class="s"> Xiangyu Zhang and</span>
|
|
<span class="s"> Shaoqing Ren and</span>
|
|
<span class="s"> Jian Sun}</span><span class="p">,</span>
|
|
<span class="w"> </span><span class="na">title</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{Deep Residual Learning for Image Recognition}</span><span class="p">,</span>
|
|
<span class="w"> </span><span class="na">journal</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{CoRR}</span><span class="p">,</span>
|
|
<span class="w"> </span><span class="na">volume</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{abs/1512.03385}</span><span class="p">,</span>
|
|
<span class="w"> </span><span class="na">year</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{2015}</span><span class="p">,</span>
|
|
<span class="w"> </span><span class="na">url</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{http://arxiv.org/abs/1512.03385}</span><span class="p">,</span>
|
|
<span class="w"> </span><span class="na">archivePrefix</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{arXiv}</span><span class="p">,</span>
|
|
<span class="w"> </span><span class="na">eprint</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{1512.03385}</span><span class="p">,</span>
|
|
<span class="w"> </span><span class="na">timestamp</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{Wed, 17 Apr 2019 17:23:45 +0200}</span><span class="p">,</span>
|
|
<span class="w"> </span><span class="na">biburl</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{https://dblp.org/rec/journals/corr/HeZRS15.bib}</span><span class="p">,</span>
|
|
<span class="w"> </span><span class="na">bibsource</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{dblp computer science bibliography, https://dblp.org}</span>
|
|
<span class="p">}</span>
|
|
</code></pre></div>
|
|
<!--
|
|
Type: model-index
|
|
Collections:
|
|
- Name: Gloun ResNet
|
|
Paper:
|
|
Title: Deep Residual Learning for Image Recognition
|
|
URL: https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
|
Models:
|
|
- Name: gluon_resnet101_v1b
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 10068547584
|
|
Parameters: 44550000
|
|
File Size: 178723172
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet101_v1b
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L89
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1b-3b017079.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 79.3%
|
|
Top 5 Accuracy: 94.53%
|
|
- Name: gluon_resnet101_v1c
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 10376567296
|
|
Parameters: 44570000
|
|
File Size: 178802575
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet101_v1c
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L113
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1c-1f26822a.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 79.53%
|
|
Top 5 Accuracy: 94.59%
|
|
- Name: gluon_resnet101_v1d
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 10377018880
|
|
Parameters: 44570000
|
|
File Size: 178802755
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet101_v1d
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L138
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1d-0f9c8644.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 80.4%
|
|
Top 5 Accuracy: 95.02%
|
|
- Name: gluon_resnet101_v1s
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 11805511680
|
|
Parameters: 44670000
|
|
File Size: 179221777
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet101_v1s
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L166
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1s-60fe0cc1.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 80.29%
|
|
Top 5 Accuracy: 95.16%
|
|
- Name: gluon_resnet152_v1b
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 14857660416
|
|
Parameters: 60190000
|
|
File Size: 241534001
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet152_v1b
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L97
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1b-c1edb0dd.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 79.69%
|
|
Top 5 Accuracy: 94.73%
|
|
- Name: gluon_resnet152_v1c
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 15165680128
|
|
Parameters: 60210000
|
|
File Size: 241613404
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet152_v1c
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L121
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1c-a3bb0b98.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 79.91%
|
|
Top 5 Accuracy: 94.85%
|
|
- Name: gluon_resnet152_v1d
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 15166131712
|
|
Parameters: 60210000
|
|
File Size: 241613584
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet152_v1d
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L147
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1d-bd354e12.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 80.48%
|
|
Top 5 Accuracy: 95.2%
|
|
- Name: gluon_resnet152_v1s
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 16594624512
|
|
Parameters: 60320000
|
|
File Size: 242032606
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet152_v1s
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L175
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1s-dcc41b81.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 81.02%
|
|
Top 5 Accuracy: 95.42%
|
|
- Name: gluon_resnet18_v1b
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 2337073152
|
|
Parameters: 11690000
|
|
File Size: 46816736
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet18_v1b
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L65
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet18_v1b-0757602b.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 70.84%
|
|
Top 5 Accuracy: 89.76%
|
|
- Name: gluon_resnet34_v1b
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 4718469120
|
|
Parameters: 21800000
|
|
File Size: 87295112
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet34_v1b
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L73
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet34_v1b-c6d82d59.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 74.59%
|
|
Top 5 Accuracy: 92.0%
|
|
- Name: gluon_resnet50_v1b
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 5282531328
|
|
Parameters: 25560000
|
|
File Size: 102493763
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet50_v1b
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L81
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1b-0ebe02e2.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 77.58%
|
|
Top 5 Accuracy: 93.72%
|
|
- Name: gluon_resnet50_v1c
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 5590551040
|
|
Parameters: 25580000
|
|
File Size: 102573166
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet50_v1c
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L105
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1c-48092f55.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 78.01%
|
|
Top 5 Accuracy: 93.99%
|
|
- Name: gluon_resnet50_v1d
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 5591002624
|
|
Parameters: 25580000
|
|
File Size: 102573346
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet50_v1d
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L129
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1d-818a1b1b.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 79.06%
|
|
Top 5 Accuracy: 94.46%
|
|
- Name: gluon_resnet50_v1s
|
|
In Collection: Gloun ResNet
|
|
Metadata:
|
|
FLOPs: 7019495424
|
|
Parameters: 25680000
|
|
File Size: 102992368
|
|
Architecture:
|
|
- 1x1 Convolution
|
|
- Batch Normalization
|
|
- Bottleneck Residual Block
|
|
- Convolution
|
|
- Global Average Pooling
|
|
- Max Pooling
|
|
- ReLU
|
|
- Residual Block
|
|
- Residual Connection
|
|
- Softmax
|
|
Tasks:
|
|
- Image Classification
|
|
Training Data:
|
|
- ImageNet
|
|
ID: gluon_resnet50_v1s
|
|
Crop Pct: '0.875'
|
|
Image Size: '224'
|
|
Interpolation: bicubic
|
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L156
|
|
Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1s-1762acc0.pth
|
|
Results:
|
|
- Task: Image Classification
|
|
Dataset: ImageNet
|
|
Metrics:
|
|
Top 1 Accuracy: 78.7%
|
|
Top 5 Accuracy: 94.25%
|
|
-->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</article>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
</main>
|
|
|
|
<footer class="md-footer">
|
|
|
|
<div class="md-footer-meta md-typeset">
|
|
<div class="md-footer-meta__inner md-grid">
|
|
<div class="md-copyright">
|
|
|
|
|
|
Made with
|
|
<a href="https://squidfunk.github.io/mkdocs-material/" target="_blank" rel="noopener">
|
|
Material for MkDocs
|
|
</a>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
</div>
|
|
</footer>
|
|
|
|
</div>
|
|
<div class="md-dialog" data-md-component="dialog">
|
|
<div class="md-dialog__inner md-typeset"></div>
|
|
</div>
|
|
|
|
<script id="__config" type="application/json">{"base": "../..", "features": [], "search": "../../assets/javascripts/workers/search.12658920.min.js", "translations": {"clipboard.copied": "Copied to clipboard", "clipboard.copy": "Copy to clipboard", "search.result.more.one": "1 more on this page", "search.result.more.other": "# more on this page", "search.result.none": "No matching documents", "search.result.one": "1 matching document", "search.result.other": "# matching documents", "search.result.placeholder": "Type to start searching", "search.result.term.missing": "Missing", "select.version": "Select version"}}</script>
|
|
|
|
|
|
<script src="../../assets/javascripts/bundle.5cf534bf.min.js"></script>
|
|
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-MML-AM_CHTML"></script>
|
|
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/tablesort/5.2.1/tablesort.min.js"></script>
|
|
|
|
<script src="../../javascripts/tables.js"></script>
|
|
|
|
|
|
</body>
|
|
</html> |