pytorch-image-models/timm/models/visformer.py

428 lines
16 KiB

""" Visformer
Paper: Visformer: The Vision-friendly Transformer - https://arxiv.org/abs/2104.12533
From original at https://github.com/danczs/Visformer
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
"""
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import to_2tuple, trunc_normal_, DropPath, PatchEmbed, LayerNorm2d, create_classifier
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq
from ._registry import register_model
__all__ = ['Visformer']
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.0', 'classifier': 'head',
**kwargs
}
default_cfgs = dict(
visformer_tiny=_cfg(),
visformer_small=_cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/visformer_small-839e1f5b.pth'
),
)
class SpatialMlp(nn.Module):
def __init__(
self, in_features, hidden_features=None, out_features=None,
act_layer=nn.GELU, drop=0., group=8, spatial_conv=False):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
drop_probs = to_2tuple(drop)
self.in_features = in_features
self.out_features = out_features
self.spatial_conv = spatial_conv
if self.spatial_conv:
if group < 2: # net setting
hidden_features = in_features * 5 // 6
else:
hidden_features = in_features * 2
self.hidden_features = hidden_features
self.group = group
self.conv1 = nn.Conv2d(in_features, hidden_features, 1, stride=1, padding=0, bias=False)
self.act1 = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
if self.spatial_conv:
self.conv2 = nn.Conv2d(
hidden_features, hidden_features, 3, stride=1, padding=1, groups=self.group, bias=False)
self.act2 = act_layer()
else:
self.conv2 = None
self.act2 = None
self.conv3 = nn.Conv2d(hidden_features, out_features, 1, stride=1, padding=0, bias=False)
self.drop3 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.conv1(x)
x = self.act1(x)
x = self.drop1(x)
if self.conv2 is not None:
x = self.conv2(x)
x = self.act2(x)
x = self.conv3(x)
x = self.drop3(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, head_dim_ratio=1., attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.num_heads = num_heads
head_dim = round(dim // num_heads * head_dim_ratio)
self.head_dim = head_dim
self.scale = head_dim ** -0.5
self.qkv = nn.Conv2d(dim, head_dim * num_heads * 3, 1, stride=1, padding=0, bias=False)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Conv2d(self.head_dim * self.num_heads, dim, 1, stride=1, padding=0, bias=False)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, C, H, W = x.shape
x = self.qkv(x).reshape(B, 3, self.num_heads, self.head_dim, -1).permute(1, 0, 2, 4, 3)
q, k, v = x.unbind(0)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.permute(0, 1, 3, 2).reshape(B, -1, H, W)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self, dim, num_heads, head_dim_ratio=1., mlp_ratio=4.,
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=LayerNorm2d,
group=8, attn_disabled=False, spatial_conv=False):
super().__init__()
self.spatial_conv = spatial_conv
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
if attn_disabled:
self.norm1 = None
self.attn = None
else:
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, head_dim_ratio=head_dim_ratio, attn_drop=attn_drop, proj_drop=drop)
self.norm2 = norm_layer(dim)
self.mlp = SpatialMlp(
in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop,
group=group, spatial_conv=spatial_conv) # new setting
def forward(self, x):
if self.attn is not None:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class Visformer(nn.Module):
def __init__(
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, init_channels=32, embed_dim=384,
depth=12, num_heads=6, mlp_ratio=4., drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
norm_layer=LayerNorm2d, attn_stage='111', pos_embed=True, spatial_conv='111',
vit_stem=False, group=8, global_pool='avg', conv_init=False, embed_norm=None):
super().__init__()
img_size = to_2tuple(img_size)
self.num_classes = num_classes
self.embed_dim = embed_dim
self.init_channels = init_channels
self.img_size = img_size
self.vit_stem = vit_stem
self.conv_init = conv_init
if isinstance(depth, (list, tuple)):
self.stage_num1, self.stage_num2, self.stage_num3 = depth
depth = sum(depth)
else:
self.stage_num1 = self.stage_num3 = depth // 3
self.stage_num2 = depth - self.stage_num1 - self.stage_num3
self.pos_embed = pos_embed
self.grad_checkpointing = False
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
# stage 1
if self.vit_stem:
self.stem = None
self.patch_embed1 = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans,
embed_dim=embed_dim, norm_layer=embed_norm, flatten=False)
img_size = [x // patch_size for x in img_size]
else:
if self.init_channels is None:
self.stem = None
self.patch_embed1 = PatchEmbed(
img_size=img_size, patch_size=patch_size // 2, in_chans=in_chans,
embed_dim=embed_dim // 2, norm_layer=embed_norm, flatten=False)
img_size = [x // (patch_size // 2) for x in img_size]
else:
self.stem = nn.Sequential(
nn.Conv2d(in_chans, self.init_channels, 7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(self.init_channels),
nn.ReLU(inplace=True)
)
img_size = [x // 2 for x in img_size]
self.patch_embed1 = PatchEmbed(
img_size=img_size, patch_size=patch_size // 4, in_chans=self.init_channels,
embed_dim=embed_dim // 2, norm_layer=embed_norm, flatten=False)
img_size = [x // (patch_size // 4) for x in img_size]
if self.pos_embed:
if self.vit_stem:
self.pos_embed1 = nn.Parameter(torch.zeros(1, embed_dim, *img_size))
else:
self.pos_embed1 = nn.Parameter(torch.zeros(1, embed_dim//2, *img_size))
self.pos_drop = nn.Dropout(p=drop_rate)
self.stage1 = nn.Sequential(*[
Block(
dim=embed_dim//2, num_heads=num_heads, head_dim_ratio=0.5, mlp_ratio=mlp_ratio,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
group=group, attn_disabled=(attn_stage[0] == '0'), spatial_conv=(spatial_conv[0] == '1')
)
for i in range(self.stage_num1)
])
# stage2
if not self.vit_stem:
self.patch_embed2 = PatchEmbed(
img_size=img_size, patch_size=patch_size // 8, in_chans=embed_dim // 2,
embed_dim=embed_dim, norm_layer=embed_norm, flatten=False)
img_size = [x // (patch_size // 8) for x in img_size]
if self.pos_embed:
self.pos_embed2 = nn.Parameter(torch.zeros(1, embed_dim, *img_size))
self.stage2 = nn.Sequential(*[
Block(
dim=embed_dim, num_heads=num_heads, head_dim_ratio=1.0, mlp_ratio=mlp_ratio,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
group=group, attn_disabled=(attn_stage[1] == '0'), spatial_conv=(spatial_conv[1] == '1')
)
for i in range(self.stage_num1, self.stage_num1+self.stage_num2)
])
# stage 3
if not self.vit_stem:
self.patch_embed3 = PatchEmbed(
img_size=img_size, patch_size=patch_size // 8, in_chans=embed_dim,
embed_dim=embed_dim * 2, norm_layer=embed_norm, flatten=False)
img_size = [x // (patch_size // 8) for x in img_size]
if self.pos_embed:
self.pos_embed3 = nn.Parameter(torch.zeros(1, embed_dim*2, *img_size))
self.stage3 = nn.Sequential(*[
Block(
dim=embed_dim*2, num_heads=num_heads, head_dim_ratio=1.0, mlp_ratio=mlp_ratio,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
group=group, attn_disabled=(attn_stage[2] == '0'), spatial_conv=(spatial_conv[2] == '1')
)
for i in range(self.stage_num1+self.stage_num2, depth)
])
# head
self.num_features = embed_dim if self.vit_stem else embed_dim * 2
self.norm = norm_layer(self.num_features)
self.global_pool, self.head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
# weights init
if self.pos_embed:
trunc_normal_(self.pos_embed1, std=0.02)
if not self.vit_stem:
trunc_normal_(self.pos_embed2, std=0.02)
trunc_normal_(self.pos_embed3, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Conv2d):
if self.conv_init:
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
else:
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0.)
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^patch_embed1|pos_embed1|stem', # stem and embed
blocks=[
(r'^stage(\d+)\.(\d+)' if coarse else r'^stage(\d+)\.(\d+)', None),
(r'^(?:patch_embed|pos_embed)(\d+)', (0,)),
(r'^norm', (99999,))
]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool, self.head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
def forward_features(self, x):
if self.stem is not None:
x = self.stem(x)
# stage 1
x = self.patch_embed1(x)
if self.pos_embed:
x = self.pos_drop(x + self.pos_embed1)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.stage1, x)
else:
x = self.stage1(x)
# stage 2
if not self.vit_stem:
x = self.patch_embed2(x)
if self.pos_embed:
x = self.pos_drop(x + self.pos_embed2)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.stage2, x)
else:
x = self.stage2(x)
# stage3
if not self.vit_stem:
x = self.patch_embed3(x)
if self.pos_embed:
x = self.pos_drop(x + self.pos_embed3)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.stage3, x)
else:
x = self.stage3(x)
x = self.norm(x)
return x
def forward_head(self, x, pre_logits: bool = False):
x = self.global_pool(x)
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _create_visformer(variant, pretrained=False, default_cfg=None, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
model = build_model_with_cfg(Visformer, variant, pretrained, **kwargs)
return model
@register_model
def visformer_tiny(pretrained=False, **kwargs):
model_cfg = dict(
init_channels=16, embed_dim=192, depth=(7, 4, 4), num_heads=3, mlp_ratio=4., group=8,
attn_stage='011', spatial_conv='100', norm_layer=nn.BatchNorm2d, conv_init=True,
embed_norm=nn.BatchNorm2d, **kwargs)
model = _create_visformer('visformer_tiny', pretrained=pretrained, **model_cfg)
return model
@register_model
def visformer_small(pretrained=False, **kwargs):
model_cfg = dict(
init_channels=32, embed_dim=384, depth=(7, 4, 4), num_heads=6, mlp_ratio=4., group=8,
attn_stage='011', spatial_conv='100', norm_layer=nn.BatchNorm2d, conv_init=True,
embed_norm=nn.BatchNorm2d, **kwargs)
model = _create_visformer('visformer_small', pretrained=pretrained, **model_cfg)
return model
# @register_model
# def visformer_net1(pretrained=False, **kwargs):
# model = Visformer(
# init_channels=None, embed_dim=384, depth=(0, 12, 0), num_heads=6, mlp_ratio=4., attn_stage='111',
# spatial_conv='000', vit_stem=True, conv_init=True, **kwargs)
# model.default_cfg = _cfg()
# return model
#
#
# @register_model
# def visformer_net2(pretrained=False, **kwargs):
# model = Visformer(
# init_channels=32, embed_dim=384, depth=(0, 12, 0), num_heads=6, mlp_ratio=4., attn_stage='111',
# spatial_conv='000', vit_stem=False, conv_init=True, **kwargs)
# model.default_cfg = _cfg()
# return model
#
#
# @register_model
# def visformer_net3(pretrained=False, **kwargs):
# model = Visformer(
# init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., attn_stage='111',
# spatial_conv='000', vit_stem=False, conv_init=True, **kwargs)
# model.default_cfg = _cfg()
# return model
#
#
# @register_model
# def visformer_net4(pretrained=False, **kwargs):
# model = Visformer(
# init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., attn_stage='111',
# spatial_conv='000', vit_stem=False, conv_init=True, **kwargs)
# model.default_cfg = _cfg()
# return model
#
#
# @register_model
# def visformer_net5(pretrained=False, **kwargs):
# model = Visformer(
# init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., group=1, attn_stage='111',
# spatial_conv='111', vit_stem=False, conv_init=True, **kwargs)
# model.default_cfg = _cfg()
# return model
#
#
# @register_model
# def visformer_net6(pretrained=False, **kwargs):
# model = Visformer(
# init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., group=1, attn_stage='111',
# pos_embed=False, spatial_conv='111', conv_init=True, **kwargs)
# model.default_cfg = _cfg()
# return model
#
#
# @register_model
# def visformer_net7(pretrained=False, **kwargs):
# model = Visformer(
# init_channels=32, embed_dim=384, depth=(6, 7, 7), num_heads=6, group=1, attn_stage='000',
# pos_embed=False, spatial_conv='111', conv_init=True, **kwargs)
# model.default_cfg = _cfg()
# return model