pytorch-image-models/timm/models/layers/pool2d_same.py

74 lines
3.0 KiB

""" AvgPool2d w/ Same Padding
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Tuple, Optional
from .helpers import to_2tuple
from .padding import pad_same, get_padding_value
def avg_pool2d_same(x, kernel_size: List[int], stride: List[int], padding: List[int] = (0, 0),
ceil_mode: bool = False, count_include_pad: bool = True):
# FIXME how to deal with count_include_pad vs not for external padding?
x = pad_same(x, kernel_size, stride)
return F.avg_pool2d(x, kernel_size, stride, (0, 0), ceil_mode, count_include_pad)
class AvgPool2dSame(nn.AvgPool2d):
""" Tensorflow like 'SAME' wrapper for 2D average pooling
"""
def __init__(self, kernel_size: int, stride=None, padding=0, ceil_mode=False, count_include_pad=True):
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
super(AvgPool2dSame, self).__init__(kernel_size, stride, (0, 0), ceil_mode, count_include_pad)
def forward(self, x):
x = pad_same(x, self.kernel_size, self.stride)
return F.avg_pool2d(
x, self.kernel_size, self.stride, self.padding, self.ceil_mode, self.count_include_pad)
def max_pool2d_same(
x, kernel_size: List[int], stride: List[int], padding: List[int] = (0, 0),
dilation: List[int] = (1, 1), ceil_mode: bool = False):
x = pad_same(x, kernel_size, stride, value=-float('inf'))
return F.max_pool2d(x, kernel_size, stride, (0, 0), dilation, ceil_mode)
class MaxPool2dSame(nn.MaxPool2d):
""" Tensorflow like 'SAME' wrapper for 2D max pooling
"""
def __init__(self, kernel_size: int, stride=None, padding=0, dilation=1, ceil_mode=False):
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
dilation = to_2tuple(dilation)
super(MaxPool2dSame, self).__init__(kernel_size, stride, (0, 0), dilation, ceil_mode)
def forward(self, x):
x = pad_same(x, self.kernel_size, self.stride, value=-float('inf'))
return F.max_pool2d(x, self.kernel_size, self.stride, (0, 0), self.dilation, self.ceil_mode)
def create_pool2d(pool_type, kernel_size, stride=None, **kwargs):
stride = stride or kernel_size
padding = kwargs.pop('padding', '')
padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, **kwargs)
if is_dynamic:
if pool_type == 'avg':
return AvgPool2dSame(kernel_size, stride=stride, **kwargs)
elif pool_type == 'max':
return MaxPool2dSame(kernel_size, stride=stride, **kwargs)
else:
assert False, f'Unsupported pool type {pool_type}'
else:
if pool_type == 'avg':
return nn.AvgPool2d(kernel_size, stride=stride, padding=padding, **kwargs)
elif pool_type == 'max':
return nn.MaxPool2d(kernel_size, stride=stride, padding=padding, **kwargs)
else:
assert False, f'Unsupported pool type {pool_type}'