""" Generic MobileNet A generic MobileNet class with building blocks to support a variety of models: * EfficientNet (B0-B4 in code right now, work in progress, still verifying) * MNasNet B1, A1 (SE), Small * MobileNet V1, V2, and V3 (work in progress) * FBNet-C (TODO A & B) * ChamNet (TODO still guessing at architecture definition) * Single-Path NAS Pixel1 * ShuffleNetV2 (TODO add IR shuffle block) * And likely more... TODO not all combinations and variations have been tested. Currently working on training hyper-params... Hacked together by Ross Wightman """ import math import re from copy import deepcopy import torch import torch.nn as nn import torch.nn.functional as F from models.helpers import load_pretrained from models.adaptive_avgmax_pool import SelectAdaptivePool2d from models.conv2d_same import sconv2d from data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD _models = [ 'mnasnet_050', 'mnasnet_075', 'mnasnet_100', 'mnasnet_140', 'semnasnet_050', 'semnasnet_075', 'semnasnet_100', 'semnasnet_140', 'mnasnet_small', 'mobilenetv1_100', 'mobilenetv2_100', 'mobilenetv3_050', 'mobilenetv3_075', 'mobilenetv3_100', 'chamnetv1_100', 'chamnetv2_100', 'fbnetc_100', 'spnasnet_100', 'tflite_mnasnet_100', 'tflite_semnasnet_100', 'efficientnet_b0', 'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4'] __all__ = ['GenMobileNet', 'genmobilenet_model_names'] + _models def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } default_cfgs = { 'mnasnet_050': _cfg(url=''), 'mnasnet_075': _cfg(url=''), 'mnasnet_100': _cfg(url=''), 'tflite_mnasnet_100': _cfg(url='https://www.dropbox.com/s/q55ir3tx8mpeyol/tflite_mnasnet_100-31639cdc.pth?dl=1', interpolation='bicubic'), 'mnasnet_140': _cfg(url=''), 'semnasnet_050': _cfg(url=''), 'semnasnet_075': _cfg(url=''), 'semnasnet_100': _cfg(url=''), 'tflite_semnasnet_100': _cfg(url='https://www.dropbox.com/s/yiori47sr9dydev/tflite_semnasnet_100-7c780429.pth?dl=1', interpolation='bicubic'), 'semnasnet_140': _cfg(url=''), 'mnasnet_small': _cfg(url=''), 'mobilenetv1_100': _cfg(url=''), 'mobilenetv2_100': _cfg(url=''), 'mobilenetv3_050': _cfg(url=''), 'mobilenetv3_075': _cfg(url=''), 'mobilenetv3_100': _cfg(url=''), 'chamnetv1_100': _cfg(url=''), 'chamnetv2_100': _cfg(url=''), 'fbnetc_100': _cfg(url='https://www.dropbox.com/s/0ku2tztuibrynld/fbnetc_100-f49a0c5f.pth?dl=1'), 'spnasnet_100': _cfg(url='https://www.dropbox.com/s/iieopt18rytkgaa/spnasnet_100-048bc3f4.pth?dl=1'), 'efficientnet_b0': _cfg(url=''), 'efficientnet_b1': _cfg(url='', input_size=(3, 240, 240)), 'efficientnet_b2': _cfg(url='', input_size=(3, 260, 260)), 'efficientnet_b3': _cfg(url='', input_size=(3, 300, 300)), 'efficientnet_b4': _cfg(url='', input_size=(3, 380, 380)), } _DEBUG = False # Default args for PyTorch BN impl _BN_MOMENTUM_PT_DEFAULT = 0.1 _BN_EPS_PT_DEFAULT = 1e-5 # Defaults used for Google/Tensorflow training of mobile networks /w RMSprop as per # papers and TF reference implementations. PT momentum equiv for TF decay is (1 - TF decay) # NOTE: momentum varies btw .99 and .9997 depending on source # .99 in official TF TPU impl # .9997 (/w .999 in search space) for paper _BN_MOMENTUM_TF_DEFAULT = 1 - 0.99 _BN_EPS_TF_DEFAULT = 1e-3 def _resolve_bn_params(kwargs): # NOTE kwargs passed as dict intentionally bn_momentum_default = _BN_MOMENTUM_PT_DEFAULT bn_eps_default = _BN_EPS_PT_DEFAULT bn_tf = kwargs.pop('bn_tf', False) if bn_tf: bn_momentum_default = _BN_MOMENTUM_TF_DEFAULT bn_eps_default = _BN_EPS_TF_DEFAULT bn_momentum = kwargs.pop('bn_momentum', None) bn_eps = kwargs.pop('bn_eps', None) if bn_momentum is None: bn_momentum = bn_momentum_default if bn_eps is None: bn_eps = bn_eps_default return bn_momentum, bn_eps def _round_channels(channels, multiplier=1.0, divisor=8, channel_min=None): """Round number of filters based on depth multiplier.""" if not multiplier: return channels channels *= multiplier channel_min = channel_min or divisor new_channels = max( int(channels + divisor / 2) // divisor * divisor, channel_min) # Make sure that round down does not go down by more than 10%. if new_channels < 0.9 * channels: new_channels += divisor return new_channels def _decode_block_str(block_str, depth_multiplier=1.0): """ Decode block definition string Gets a list of block arg (dicts) through a string notation of arguments. E.g. ir_r2_k3_s2_e1_i32_o16_se0.25_noskip All args can exist in any order with the exception of the leading string which is assumed to indicate the block type. leading string - block type ( ir = InvertedResidual, ds = DepthwiseSep, dsa = DeptwhiseSep with pw act, ca = Cascade3x3, and possibly more) r - number of repeat blocks, k - kernel size, s - strides (1-9), e - expansion ratio, c - output channels, se - squeeze/excitation ratio a - activation fn ('re', 'r6', or 'hs') Args: block_str: a string representation of block arguments. Returns: A list of block args (dicts) Raises: ValueError: if the string def not properly specified (TODO) """ assert isinstance(block_str, str) ops = block_str.split('_') block_type = ops[0] # take the block type off the front ops = ops[1:] options = {} noskip = False for op in ops: # string options being checked on individual basis, combine if they grow if op.startswith('a'): # activation fn key = op[0] v = op[1:] if v == 're': value = F.relu elif v == 'r6': value = F.relu6 elif v == 'hs': value = hard_swish else: continue options[key] = value elif op == 'noskip': noskip = True else: # all numeric options splits = re.split(r'(\d.*)', op) if len(splits) >= 2: key, value = splits[:2] options[key] = value # if act_fn is None, the model default (passed to model init) will be used act_fn = options['a'] if 'a' in options else None num_repeat = int(options['r']) # each type of block has different valid arguments, fill accordingly if block_type == 'ir': block_args = dict( block_type=block_type, kernel_size=int(options['k']), out_chs=int(options['c']), exp_ratio=float(options['e']), se_ratio=float(options['se']) if 'se' in options else None, stride=int(options['s']), act_fn=act_fn, noskip=noskip, ) if 'g' in options: block_args['pw_group'] = options['g'] if options['g'] > 1: block_args['shuffle_type'] = 'mid' elif block_type == 'ca': block_args = dict( block_type=block_type, kernel_size=int(options['k']), out_chs=int(options['c']), stride=int(options['s']), act_fn=act_fn, noskip=noskip, ) elif block_type == 'ds' or block_type == 'dsa': block_args = dict( block_type=block_type, kernel_size=int(options['k']), out_chs=int(options['c']), se_ratio=float(options['se']) if 'se' in options else None, stride=int(options['s']), act_fn=act_fn, noskip=block_type == 'dsa' or noskip, pw_act=block_type == 'dsa', ) elif block_type == 'cn': block_args = dict( block_type=block_type, kernel_size=int(options['k']), out_chs=int(options['c']), stride=int(options['s']), act_fn=act_fn, ) else: assert False, 'Unknown block type (%s)' % block_type # return a list of block args expanded by num_repeat and # scaled by depth_multiplier num_repeat = int(math.ceil(num_repeat * depth_multiplier)) return [deepcopy(block_args) for _ in range(num_repeat)] def _get_padding(kernel_size, stride, dilation=1): padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 return padding def _padding_arg(default, padding_same=False): return 'SAME' if padding_same else default def _decode_arch_args(string_list): block_args = [] for block_str in string_list: block_args.append(_decode_block_str(block_str)) return block_args def _decode_arch_def(arch_def, depth_multiplier=1.0): arch_args = [] for stack_idx, block_strings in enumerate(arch_def): assert isinstance(block_strings, list) stack_args = [] for block_str in block_strings: assert isinstance(block_str, str) stack_args.extend(_decode_block_str(block_str, depth_multiplier)) arch_args.append(stack_args) return arch_args class _BlockBuilder: """ Build Trunk Blocks This ended up being somewhat of a cross between https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py and https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_builder.py """ def __init__(self, channel_multiplier=1.0, channel_divisor=8, channel_min=None, drop_connect_rate=0., act_fn=None, se_gate_fn=torch.sigmoid, se_reduce_mid=False, bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT, folded_bn=False, padding_same=False, verbose=False): self.channel_multiplier = channel_multiplier self.channel_divisor = channel_divisor self.channel_min = channel_min self.drop_connect_rate = drop_connect_rate self.act_fn = act_fn self.se_gate_fn = se_gate_fn self.se_reduce_mid = se_reduce_mid self.bn_momentum = bn_momentum self.bn_eps = bn_eps self.folded_bn = folded_bn self.padding_same = padding_same self.verbose = verbose self.in_chs = None def _round_channels(self, chs): return _round_channels(chs, self.channel_multiplier, self.channel_divisor, self.channel_min) def _make_block(self, ba): bt = ba.pop('block_type') ba['in_chs'] = self.in_chs ba['out_chs'] = self._round_channels(ba['out_chs']) ba['bn_momentum'] = self.bn_momentum ba['bn_eps'] = self.bn_eps ba['folded_bn'] = self.folded_bn ba['padding_same'] = self.padding_same # block act fn overrides the model default ba['act_fn'] = ba['act_fn'] if ba['act_fn'] is not None else self.act_fn assert ba['act_fn'] is not None if self.verbose: print('args:', ba) # could replace this if with lambdas or functools binding if variety increases if bt == 'ir': ba['drop_connect_rate'] = self.drop_connect_rate ba['se_gate_fn'] = self.se_gate_fn ba['se_reduce_mid'] = self.se_reduce_mid block = InvertedResidual(**ba) elif bt == 'ds' or bt == 'dsa': ba['drop_connect_rate'] = self.drop_connect_rate block = DepthwiseSeparableConv(**ba) elif bt == 'ca': block = CascadeConv(**ba) elif bt == 'cn': block = ConvBnAct(**ba) else: assert False, 'Uknkown block type (%s) while building model.' % bt self.in_chs = ba['out_chs'] # update in_chs for arg of next block return block def _make_stack(self, stack_args): blocks = [] # each stack (stage) contains a list of block arguments for block_idx, ba in enumerate(stack_args): if self.verbose: print('block', block_idx, end=', ') if block_idx >= 1: # only the first block in any stack/stage can have a stride > 1 ba['stride'] = 1 block = self._make_block(ba) blocks.append(block) return nn.Sequential(*blocks) def __call__(self, in_chs, block_args): """ Build the blocks Args: in_chs: Number of input-channels passed to first block arch_def: A list of lists, outer list defines stacks (or stages), inner list contains strings defining block configuration(s) Return: List of block stacks (each stack wrapped in nn.Sequential) """ if self.verbose: print('Building model trunk with %d stacks (stages)...' % len(block_args)) self.in_chs = in_chs blocks = [] # outer list of block_args defines the stacks ('stages' by some conventions) for stack_idx, stack in enumerate(block_args): if self.verbose: print('stack', stack_idx) assert isinstance(stack, list) stack = self._make_stack(stack) blocks.append(stack) if self.verbose: print() return blocks def _initialize_weight_goog(m): # weight init as per Tensorflow Official impl # https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_model.py if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels # fan-out m.weight.data.normal_(0, math.sqrt(2.0 / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1.0) m.bias.data.zero_() elif isinstance(m, nn.Linear): n = m.weight.size(0) # fan-out init_range = 1.0 / math.sqrt(n) m.weight.data.uniform_(-init_range, init_range) m.bias.data.zero_() def _initialize_weight_default(m): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1.0) m.bias.data.zero_() elif isinstance(m, nn.Linear): nn.init.kaiming_uniform_(m.weight, mode='fan_in', nonlinearity='linear') def swish(x): return x * torch.sigmoid(x) def hard_swish(x): return x * F.relu6(x + 3.) / 6. def hard_sigmoid(x): return F.relu6(x + 3.) / 6. def drop_connect(inputs, training=False, drop_connect_rate=0.): """Apply drop connect.""" if not training: return inputs keep_prob = 1 - drop_connect_rate random_tensor = keep_prob + torch.rand( (inputs.size()[0], 1, 1, 1), dtype=inputs.dtype, device=inputs.device) random_tensor.floor_() # binarize output = inputs.div(keep_prob) * random_tensor return output class ChannelShuffle(nn.Module): # FIXME haven't used yet def __init__(self, groups): super(ChannelShuffle, self).__init__() self.groups = groups def forward(self, x): """Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]""" N, C, H, W = x.size() g = self.groups assert C % g == 0, "Incompatible group size {} for input channel {}".format( g, C ) return ( x.view(N, g, int(C / g), H, W) .permute(0, 2, 1, 3, 4) .contiguous() .view(N, C, H, W) ) class SqueezeExcite(nn.Module): def __init__(self, in_chs, reduce_chs=None, act_fn=F.relu, gate_fn=torch.sigmoid): super(SqueezeExcite, self).__init__() self.act_fn = act_fn self.gate_fn = gate_fn reduced_chs = reduce_chs or in_chs self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True) self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True) def forward(self, x): # NOTE adaptiveavgpool can be used here, but seems to cause issues with NVIDIA AMP performance x_se = x.view(x.size(0), x.size(1), -1).mean(-1).view(x.size(0), x.size(1), 1, 1) x_se = self.conv_reduce(x_se) x_se = self.act_fn(x_se) x_se = self.conv_expand(x_se) x = self.gate_fn(x_se) * x return x class ConvBnAct(nn.Module): def __init__(self, in_chs, out_chs, kernel_size, stride=1, act_fn=F.relu, bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT, folded_bn=False, padding_same=False): super(ConvBnAct, self).__init__() assert stride in [1, 2] self.act_fn = act_fn padding = _padding_arg(_get_padding(kernel_size, stride), padding_same) self.conv = sconv2d( in_chs, out_chs, kernel_size, stride=stride, padding=padding, bias=folded_bn) self.bn1 = None if folded_bn else nn.BatchNorm2d(out_chs, momentum=bn_momentum, eps=bn_eps) def forward(self, x): x = self.conv(x) if self.bn1 is not None: x = self.bn1(x) x = self.act_fn(x) return x class DepthwiseSeparableConv(nn.Module): """ DepthwiseSeparable block Used for DS convs in MobileNet-V1 and in the place of IR blocks with an expansion factor of 1.0. This is an alternative to having a IR with optional first pw conv. """ def __init__(self, in_chs, out_chs, kernel_size, stride=1, act_fn=F.relu, noskip=False, pw_act=False, se_ratio=0., se_gate_fn=torch.sigmoid, bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT, folded_bn=False, padding_same=False, drop_connect_rate=0.): super(DepthwiseSeparableConv, self).__init__() assert stride in [1, 2] self.has_se = se_ratio is not None and se_ratio > 0. self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip self.has_pw_act = pw_act # activation after point-wise conv self.act_fn = act_fn self.drop_connect_rate = drop_connect_rate dw_padding = _padding_arg(kernel_size // 2, padding_same) pw_padding = _padding_arg(0, padding_same) self.conv_dw = sconv2d( in_chs, in_chs, kernel_size, stride=stride, padding=dw_padding, groups=in_chs, bias=folded_bn) self.bn1 = None if folded_bn else nn.BatchNorm2d(in_chs, momentum=bn_momentum, eps=bn_eps) # Squeeze-and-excitation if self.has_se: self.se = SqueezeExcite( in_chs, reduce_chs=max(1, int(in_chs * se_ratio)), act_fn=act_fn, gate_fn=se_gate_fn) self.conv_pw = sconv2d(in_chs, out_chs, 1, padding=pw_padding, bias=folded_bn) self.bn2 = None if folded_bn else nn.BatchNorm2d(out_chs, momentum=bn_momentum, eps=bn_eps) def forward(self, x): residual = x x = self.conv_dw(x) if self.bn1 is not None: x = self.bn1(x) x = self.act_fn(x) if self.has_se: x = self.se(x) x = self.conv_pw(x) if self.bn2 is not None: x = self.bn2(x) if self.has_pw_act: x = self.act_fn(x) if self.has_residual: if self.drop_connect_rate > 0.: x = drop_connect(x, self.training, self.drop_connect_rate) x += residual return x class CascadeConv(nn.Sequential): # FIXME haven't used yet def __init__(self, in_chs, out_chs, kernel_size=3, stride=2, act_fn=F.relu, noskip=False, bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT, folded_bn=False, padding_same=False): super(CascadeConv, self).__init__() assert stride in [1, 2] self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip self.act_fn = act_fn padding = _padding_arg(1, padding_same) self.conv1 = sconv2d(in_chs, in_chs, kernel_size, stride=stride, padding=padding, bias=folded_bn) self.bn1 = None if folded_bn else nn.BatchNorm2d(in_chs, momentum=bn_momentum, eps=bn_eps) self.conv2 = sconv2d(in_chs, out_chs, kernel_size, stride=1, padding=padding, bias=folded_bn) self.bn2 = None if folded_bn else nn.BatchNorm2d(out_chs, momentum=bn_momentum, eps=bn_eps) def forward(self, x): residual = x x = self.conv1(x) if self.bn1 is not None: x = self.bn1(x) x = self.act_fn(x) x = self.conv2(x) if self.bn2 is not None: x = self.bn2(x) if self.has_residual: x += residual return x class InvertedResidual(nn.Module): """ Inverted residual block w/ optional SE""" def __init__(self, in_chs, out_chs, kernel_size, stride=1, act_fn=F.relu, exp_ratio=1.0, noskip=False, se_ratio=0., se_reduce_mid=False, se_gate_fn=torch.sigmoid, shuffle_type=None, pw_group=1, bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT, folded_bn=False, padding_same=False, drop_connect_rate=0.): super(InvertedResidual, self).__init__() mid_chs = int(in_chs * exp_ratio) self.has_se = se_ratio is not None and se_ratio > 0. self.has_residual = (in_chs == out_chs and stride == 1) and not noskip self.act_fn = act_fn self.drop_connect_rate = drop_connect_rate dw_padding = _padding_arg(kernel_size // 2, padding_same) pw_padding = _padding_arg(0, padding_same) # Point-wise expansion self.conv_pw = sconv2d(in_chs, mid_chs, 1, padding=pw_padding, groups=pw_group, bias=folded_bn) self.bn1 = None if folded_bn else nn.BatchNorm2d(mid_chs, momentum=bn_momentum, eps=bn_eps) self.shuffle_type = shuffle_type if shuffle_type is not None: self.shuffle = ChannelShuffle(pw_group) # Depth-wise convolution self.conv_dw = sconv2d( mid_chs, mid_chs, kernel_size, padding=dw_padding, stride=stride, groups=mid_chs, bias=folded_bn) self.bn2 = None if folded_bn else nn.BatchNorm2d(mid_chs, momentum=bn_momentum, eps=bn_eps) # Squeeze-and-excitation if self.has_se: se_base_chs = mid_chs if se_reduce_mid else in_chs self.se = SqueezeExcite( mid_chs, reduce_chs=max(1, int(se_base_chs * se_ratio)), act_fn=act_fn, gate_fn=se_gate_fn) # Point-wise linear projection self.conv_pwl = sconv2d(mid_chs, out_chs, 1, padding=pw_padding, groups=pw_group, bias=folded_bn) self.bn3 = None if folded_bn else nn.BatchNorm2d(out_chs, momentum=bn_momentum, eps=bn_eps) def forward(self, x): residual = x # Point-wise expansion x = self.conv_pw(x) if self.bn1 is not None: x = self.bn1(x) x = self.act_fn(x) # FIXME haven't tried this yet # for channel shuffle when using groups with pointwise convs as per FBNet variants if self.shuffle_type == "mid": x = self.shuffle(x) # Depth-wise convolution x = self.conv_dw(x) if self.bn2 is not None: x = self.bn2(x) x = self.act_fn(x) # Squeeze-and-excitation if self.has_se: x = self.se(x) # Point-wise linear projection x = self.conv_pwl(x) if self.bn3 is not None: x = self.bn3(x) if self.has_residual: if self.drop_connect_rate > 0.: x = drop_connect(x, self.training, self.drop_connect_rate) x += residual # NOTE maskrcnn_benchmark building blocks have an SE module defined here for some variants return x class GenMobileNet(nn.Module): """ Generic Mobile Net An implementation of mobile optimized networks that covers: * MobileNet-V1 * MobileNet-V2 * MobileNet-V3 * MNASNet A1, B1, and small * FBNet A, B, and C * ChamNet (arch details are murky) * Single-Path NAS Pixel1 * EfficientNet """ def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=32, num_features=1280, channel_multiplier=1.0, channel_divisor=8, channel_min=None, bn_momentum=_BN_MOMENTUM_PT_DEFAULT, bn_eps=_BN_EPS_PT_DEFAULT, drop_rate=0., drop_connect_rate=0., act_fn=F.relu, se_gate_fn=torch.sigmoid, se_reduce_mid=False, global_pool='avg', head_conv='default', weight_init='goog', folded_bn=False, padding_same=False,): super(GenMobileNet, self).__init__() self.num_classes = num_classes self.drop_rate = drop_rate self.drop_connect_rate = drop_connect_rate self.act_fn = act_fn self.num_features = num_features stem_size = _round_channels(stem_size, channel_multiplier, channel_divisor, channel_min) self.conv_stem = sconv2d( in_chans, stem_size, 3, padding=_padding_arg(1, padding_same), stride=2, bias=folded_bn) self.bn1 = None if folded_bn else nn.BatchNorm2d(stem_size, momentum=bn_momentum, eps=bn_eps) in_chs = stem_size builder = _BlockBuilder( channel_multiplier, channel_divisor, channel_min, drop_connect_rate, act_fn, se_gate_fn, se_reduce_mid, bn_momentum, bn_eps, folded_bn, padding_same, verbose=_DEBUG) self.blocks = nn.Sequential(*builder(in_chs, block_args)) in_chs = builder.in_chs if not head_conv or head_conv == 'none': self.efficient_head = False self.conv_head = None assert in_chs == self.num_features else: self.efficient_head = head_conv == 'efficient' self.conv_head = sconv2d( in_chs, self.num_features, 1, padding=_padding_arg(0, padding_same), bias=folded_bn and not self.efficient_head) self.bn2 = None if (folded_bn or self.efficient_head) else \ nn.BatchNorm2d(self.num_features, momentum=bn_momentum, eps=bn_eps) self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.classifier = nn.Linear(self.num_features, self.num_classes) for m in self.modules(): if weight_init == 'goog': _initialize_weight_goog(m) else: _initialize_weight_default(m) def get_classifier(self): return self.classifier def reset_classifier(self, num_classes, global_pool='avg'): self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.num_classes = num_classes del self.classifier if num_classes: self.classifier = nn.Linear( self.num_features * self.global_pool.feat_mult(), num_classes) else: self.classifier = None def forward_features(self, x, pool=True): x = self.conv_stem(x) if self.bn1 is not None: x = self.bn1(x) x = self.act_fn(x) x = self.blocks(x) if self.efficient_head: # efficient head, currently only mobilenet-v3 performs pool before last 1x1 conv x = self.global_pool(x) # always need to pool here regardless of flag x = self.conv_head(x) # no BN x = self.act_fn(x) if pool: # expect flattened output if pool is true, otherwise keep dim x = x.view(x.size(0), -1) else: if self.conv_head is not None: x = self.conv_head(x) if self.bn2 is not None: x = self.bn2(x) x = self.act_fn(x) if pool: x = self.global_pool(x) x = x.view(x.size(0), -1) return x def forward(self, x): x = self.forward_features(x) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) return self.classifier(x) def _gen_mnasnet_a1(channel_multiplier, num_classes=1000, **kwargs): """Creates a mnasnet-a1 model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet Paper: https://arxiv.org/pdf/1807.11626.pdf. Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c16_noskip'], # stage 1, 112x112 in ['ir_r2_k3_s2_e6_c24'], # stage 2, 56x56 in ['ir_r3_k5_s2_e3_c40_se0.25'], # stage 3, 28x28 in ['ir_r4_k3_s2_e6_c80'], # stage 4, 14x14in ['ir_r2_k3_s1_e6_c112_se0.25'], # stage 5, 14x14in ['ir_r3_k5_s2_e6_c160_se0.25'], # stage 6, 7x7 in ['ir_r1_k3_s1_e6_c320'], ] bn_momentum, bn_eps = _resolve_bn_params(kwargs) model = GenMobileNet( _decode_arch_def(arch_def), num_classes=num_classes, stem_size=32, channel_multiplier=channel_multiplier, channel_divisor=8, channel_min=None, bn_momentum=bn_momentum, bn_eps=bn_eps, **kwargs ) return model def _gen_mnasnet_b1(channel_multiplier, num_classes=1000, **kwargs): """Creates a mnasnet-b1 model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet Paper: https://arxiv.org/pdf/1807.11626.pdf. Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_c16_noskip'], # stage 1, 112x112 in ['ir_r3_k3_s2_e3_c24'], # stage 2, 56x56 in ['ir_r3_k5_s2_e3_c40'], # stage 3, 28x28 in ['ir_r3_k5_s2_e6_c80'], # stage 4, 14x14in ['ir_r2_k3_s1_e6_c96'], # stage 5, 14x14in ['ir_r4_k5_s2_e6_c192'], # stage 6, 7x7 in ['ir_r1_k3_s1_e6_c320_noskip'] ] bn_momentum, bn_eps = _resolve_bn_params(kwargs) model = GenMobileNet( _decode_arch_def(arch_def), num_classes=num_classes, stem_size=32, channel_multiplier=channel_multiplier, channel_divisor=8, channel_min=None, bn_momentum=bn_momentum, bn_eps=bn_eps, **kwargs ) return model def _gen_mnasnet_small(channel_multiplier, num_classes=1000, **kwargs): """Creates a mnasnet-b1 model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet Paper: https://arxiv.org/pdf/1807.11626.pdf. Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ ['ds_r1_k3_s1_c8'], ['ir_r1_k3_s2_e3_c16'], ['ir_r2_k3_s2_e6_c16'], ['ir_r4_k5_s2_e6_c32_se0.25'], ['ir_r3_k3_s1_e6_c32_se0.25'], ['ir_r3_k5_s2_e6_c88_se0.25'], ['ir_r1_k3_s1_e6_c144'] ] bn_momentum, bn_eps = _resolve_bn_params(kwargs) model = GenMobileNet( _decode_arch_def(arch_def), num_classes=num_classes, stem_size=8, channel_multiplier=channel_multiplier, channel_divisor=8, channel_min=None, bn_momentum=bn_momentum, bn_eps=bn_eps, **kwargs ) return model def _gen_mobilenet_v1(channel_multiplier, num_classes=1000, **kwargs): """ Generate MobileNet-V1 network Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py Paper: https://arxiv.org/abs/1801.04381 """ arch_def = [ ['dsa_r1_k3_s1_c64'], ['dsa_r2_k3_s2_c128'], ['dsa_r2_k3_s2_c256'], ['dsa_r6_k3_s2_c512'], ['dsa_r2_k3_s2_c1024'], ] bn_momentum, bn_eps = _resolve_bn_params(kwargs) model = GenMobileNet( _decode_arch_def(arch_def), num_classes=num_classes, stem_size=32, num_features=1024, channel_multiplier=channel_multiplier, channel_divisor=8, channel_min=None, bn_momentum=bn_momentum, bn_eps=bn_eps, act_fn=F.relu6, head_conv='none', **kwargs ) return model def _gen_mobilenet_v2(channel_multiplier, num_classes=1000, **kwargs): """ Generate MobileNet-V2 network Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py Paper: https://arxiv.org/abs/1801.04381 """ arch_def = [ ['ds_r1_k3_s1_c16'], ['ir_r2_k3_s2_e6_c24'], ['ir_r3_k3_s2_e6_c32'], ['ir_r4_k3_s2_e6_c64'], ['ir_r3_k3_s1_e6_c96'], ['ir_r3_k3_s2_e6_c160'], ['ir_r1_k3_s1_e6_c320'], ] bn_momentum, bn_eps = _resolve_bn_params(kwargs) model = GenMobileNet( _decode_arch_def(arch_def), num_classes=num_classes, stem_size=32, channel_multiplier=channel_multiplier, channel_divisor=8, channel_min=None, bn_momentum=bn_momentum, bn_eps=bn_eps, act_fn=F.relu6, **kwargs ) return model def _gen_mobilenet_v3(channel_multiplier, num_classes=1000, **kwargs): """Creates a MobileNet-V3 model. Ref impl: ? Paper: https://arxiv.org/abs/1905.02244 Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c16_are_noskip'], # relu # stage 1, 112x112 in ['ir_r1_k3_s2_e4_c24_are', 'ir_r1_k3_s1_e3_c24_are'], # relu # stage 2, 56x56 in ['ir_r3_k5_s2_e3_c40_se0.25_are'], # relu # stage 3, 28x28 in ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish # stage 4, 14x14in ['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish # stage 5, 14x14in ['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish # stage 6, 7x7 in ['cn_r1_k1_s1_c960'], # hard-swish ] bn_momentum, bn_eps = _resolve_bn_params(kwargs) model = GenMobileNet( _decode_arch_def(arch_def), num_classes=num_classes, stem_size=16, channel_multiplier=channel_multiplier, channel_divisor=8, channel_min=None, bn_momentum=bn_momentum, bn_eps=bn_eps, act_fn=hard_swish, se_gate_fn=hard_sigmoid, se_reduce_mid=True, head_conv='efficient', **kwargs ) return model def _gen_chamnet_v1(channel_multiplier, num_classes=1000, **kwargs): """ Generate Chameleon Network (ChamNet) Paper: https://arxiv.org/abs/1812.08934 Ref Impl: https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_modeldef.py FIXME: this a bit of an educated guess based on trunkd def in maskrcnn_benchmark """ arch_def = [ ['ir_r1_k3_s1_e1_c24'], ['ir_r2_k7_s2_e4_c48'], ['ir_r5_k3_s2_e7_c64'], ['ir_r7_k5_s2_e12_c56'], ['ir_r5_k3_s1_e8_c88'], ['ir_r4_k3_s2_e7_c152'], ['ir_r1_k3_s1_e10_c104'], ] bn_momentum, bn_eps = _resolve_bn_params(kwargs) model = GenMobileNet( _decode_arch_def(arch_def), num_classes=num_classes, stem_size=32, num_features=1280, # no idea what this is? try mobile/mnasnet default? channel_multiplier=channel_multiplier, channel_divisor=8, channel_min=None, bn_momentum=bn_momentum, bn_eps=bn_eps, **kwargs ) return model def _gen_chamnet_v2(channel_multiplier, num_classes=1000, **kwargs): """ Generate Chameleon Network (ChamNet) Paper: https://arxiv.org/abs/1812.08934 Ref Impl: https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_modeldef.py FIXME: this a bit of an educated guess based on trunk def in maskrcnn_benchmark """ arch_def = [ ['ir_r1_k3_s1_e1_c24'], ['ir_r4_k5_s2_e8_c32'], ['ir_r6_k7_s2_e5_c48'], ['ir_r3_k5_s2_e9_c56'], ['ir_r6_k3_s1_e6_c56'], ['ir_r6_k3_s2_e2_c152'], ['ir_r1_k3_s1_e6_c112'], ] bn_momentum, bn_eps = _resolve_bn_params(kwargs) model = GenMobileNet( _decode_arch_def(arch_def), num_classes=num_classes, stem_size=32, num_features=1280, # no idea what this is? try mobile/mnasnet default? channel_multiplier=channel_multiplier, channel_divisor=8, channel_min=None, bn_momentum=bn_momentum, bn_eps=bn_eps, **kwargs ) return model def _gen_fbnetc(channel_multiplier, num_classes=1000, **kwargs): """ FBNet-C Paper: https://arxiv.org/abs/1812.03443 Ref Impl: https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_modeldef.py NOTE: the impl above does not relate to the 'C' variant here, that was derived from paper, it was used to confirm some building block details """ arch_def = [ ['ir_r1_k3_s1_e1_c16'], ['ir_r1_k3_s2_e6_c24', 'ir_r2_k3_s1_e1_c24'], ['ir_r1_k5_s2_e6_c32', 'ir_r1_k5_s1_e3_c32', 'ir_r1_k5_s1_e6_c32', 'ir_r1_k3_s1_e6_c32'], ['ir_r1_k5_s2_e6_c64', 'ir_r1_k5_s1_e3_c64', 'ir_r2_k5_s1_e6_c64'], ['ir_r3_k5_s1_e6_c112', 'ir_r1_k5_s1_e3_c112'], ['ir_r4_k5_s2_e6_c184'], ['ir_r1_k3_s1_e6_c352'], ] bn_momentum, bn_eps = _resolve_bn_params(kwargs) model = GenMobileNet( _decode_arch_def(arch_def), num_classes=num_classes, stem_size=16, num_features=1984, # paper suggests this, but is not 100% clear channel_multiplier=channel_multiplier, channel_divisor=8, channel_min=None, bn_momentum=bn_momentum, bn_eps=bn_eps, **kwargs ) return model def _gen_spnasnet(channel_multiplier, num_classes=1000, **kwargs): """Creates the Single-Path NAS model from search targeted for Pixel1 phone. Paper: https://arxiv.org/abs/1904.02877 Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_c16_noskip'], # stage 1, 112x112 in ['ir_r3_k3_s2_e3_c24'], # stage 2, 56x56 in ['ir_r1_k5_s2_e6_c40', 'ir_r3_k3_s1_e3_c40'], # stage 3, 28x28 in ['ir_r1_k5_s2_e6_c80', 'ir_r3_k3_s1_e3_c80'], # stage 4, 14x14in ['ir_r1_k5_s1_e6_c96', 'ir_r3_k5_s1_e3_c96'], # stage 5, 14x14in ['ir_r4_k5_s2_e6_c192'], # stage 6, 7x7 in ['ir_r1_k3_s1_e6_c320_noskip'] ] bn_momentum, bn_eps = _resolve_bn_params(kwargs) model = GenMobileNet( _decode_arch_def(arch_def), num_classes=num_classes, stem_size=32, channel_multiplier=channel_multiplier, channel_divisor=8, channel_min=None, bn_momentum=bn_momentum, bn_eps=bn_eps, **kwargs ) return model def _gen_efficientnet(channel_multiplier=1.0, depth_multiplier=1.0, num_classes=1000, **kwargs): """Creates an EfficientNet model. Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py Paper: https://arxiv.org/abs/1905.11946 Args: channel_multiplier: multiplier to number of channels per layer depth_multiplier: multiplier to number of repeats per stage """ arch_def = [ ['ds_r1_k3_s1_e1_c16_se0.25'], ['ir_r2_k3_s2_e6_c24_se0.25'], ['ir_r2_k5_s2_e6_c40_se0.25'], ['ir_r3_k3_s2_e6_c80_se0.25'], ['ir_r3_k5_s1_e6_c112_se0.25'], ['ir_r4_k5_s2_e6_c192_se0.25'], ['ir_r1_k3_s1_e6_c320_se0.25'], ] bn_momentum, bn_eps = _resolve_bn_params(kwargs) model = GenMobileNet( _decode_arch_def(arch_def, depth_multiplier), num_classes=num_classes, stem_size=32, channel_multiplier=channel_multiplier, channel_divisor=8, channel_min=None, bn_momentum=bn_momentum, bn_eps=bn_eps, act_fn=swish, **kwargs ) return model def mnasnet_050(num_classes=1000, in_chans=3, pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 0.5. """ default_cfg = default_cfgs['mnasnet_050'] model = _gen_mnasnet_b1(0.5, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def mnasnet_075(num_classes, in_chans=3, pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 0.75. """ default_cfg = default_cfgs['mnasnet_075'] model = _gen_mnasnet_b1(0.75, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def mnasnet_100(num_classes, in_chans=3, pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 1.0. """ default_cfg = default_cfgs['mnasnet_100'] model = _gen_mnasnet_b1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def tflite_mnasnet_100(num_classes, in_chans=3, pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 1.0. """ default_cfg = default_cfgs['tflite_mnasnet_100'] # these two args are for compat with tflite pretrained weights kwargs['folded_bn'] = True kwargs['padding_same'] = True model = _gen_mnasnet_b1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def mnasnet_140(num_classes, in_chans=3, pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 1.4 """ default_cfg = default_cfgs['mnasnet_140'] model = _gen_mnasnet_b1(1.4, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def semnasnet_050(num_classes=1000, in_chans=3, pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 0.5 """ default_cfg = default_cfgs['semnasnet_050'] model = _gen_mnasnet_a1(0.5, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def semnasnet_075(num_classes, in_chans=3, pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 0.75. """ default_cfg = default_cfgs['semnasnet_075'] model = _gen_mnasnet_a1(0.75, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def semnasnet_100(num_classes, in_chans=3, pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 1.0. """ default_cfg = default_cfgs['semnasnet_100'] model = _gen_mnasnet_a1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def tflite_semnasnet_100(num_classes, in_chans=3, pretrained=False, **kwargs): """ MNASNet A1, depth multiplier of 1.0. """ default_cfg = default_cfgs['tflite_semnasnet_100'] # these two args are for compat with tflite pretrained weights kwargs['folded_bn'] = True kwargs['padding_same'] = True model = _gen_mnasnet_a1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def semnasnet_140(num_classes, in_chans=3, pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 1.4. """ default_cfg = default_cfgs['semnasnet_140'] model = _gen_mnasnet_a1(1.4, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def mnasnet_small(num_classes, in_chans=3, pretrained=False, **kwargs): """ MNASNet Small, depth multiplier of 1.0. """ default_cfg = default_cfgs['mnasnet_small'] model = _gen_mnasnet_small(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def mobilenetv1_100(num_classes, in_chans=3, pretrained=False, **kwargs): """ MobileNet V1 """ default_cfg = default_cfgs['mobilenetv1_100'] model = _gen_mobilenet_v1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def mobilenetv2_100(num_classes, in_chans=3, pretrained=False, **kwargs): """ MobileNet V2 """ default_cfg = default_cfgs['mobilenetv2_100'] model = _gen_mobilenet_v2(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def mobilenetv3_050(num_classes, in_chans=3, pretrained=False, **kwargs): """ MobileNet V3 """ default_cfg = default_cfgs['mobilenetv3_050'] model = _gen_mobilenet_v3(0.5, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def mobilenetv3_075(num_classes, in_chans=3, pretrained=False, **kwargs): """ MobileNet V3 """ default_cfg = default_cfgs['mobilenetv3_075'] model = _gen_mobilenet_v3(0.75, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def mobilenetv3_100(num_classes, in_chans=3, pretrained=False, **kwargs): """ MobileNet V3 """ default_cfg = default_cfgs['mobilenetv3_100'] model = _gen_mobilenet_v3(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def fbnetc_100(num_classes, in_chans=3, pretrained=False, **kwargs): """ FBNet-C """ default_cfg = default_cfgs['fbnetc_100'] if pretrained: # pretrained model trained with non-default BN epsilon kwargs['bn_eps'] = _BN_EPS_TF_DEFAULT model = _gen_fbnetc(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def chamnetv1_100(num_classes, in_chans=3, pretrained=False, **kwargs): """ ChamNet """ default_cfg = default_cfgs['chamnetv1_100'] model = _gen_chamnet_v1(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def chamnetv2_100(num_classes, in_chans=3, pretrained=False, **kwargs): """ ChamNet """ default_cfg = default_cfgs['chamnetv2_100'] model = _gen_chamnet_v2(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def spnasnet_100(num_classes, in_chans=3, pretrained=False, **kwargs): """ Single-Path NAS Pixel1""" default_cfg = default_cfgs['spnasnet_100'] model = _gen_spnasnet(1.0, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model # EfficientNet params # (width_coefficient, depth_coefficient, resolution, dropout_rate) # 'efficientnet-b0': (1.0, 1.0, 224, 0.2), # 'efficientnet-b1': (1.0, 1.1, 240, 0.2), # 'efficientnet-b2': (1.1, 1.2, 260, 0.3), # 'efficientnet-b3': (1.2, 1.4, 300, 0.3), # 'efficientnet-b4': (1.4, 1.8, 380, 0.4), # 'efficientnet-b5': (1.6, 2.2, 456, 0.4), # 'efficientnet-b6': (1.8, 2.6, 528, 0.5), # 'efficientnet-b7': (2.0, 3.1, 600, 0.5), def efficientnet_b0(num_classes, in_chans=3, pretrained=False, **kwargs): """ EfficientNet """ default_cfg = default_cfgs['efficientnet_b0'] # NOTE for train, drop_rate should be 0.2 model = _gen_efficientnet( channel_multiplier=1.0, depth_multiplier=1.0, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def efficientnet_b1(num_classes, in_chans=3, pretrained=False, **kwargs): """ EfficientNet """ default_cfg = default_cfgs['efficientnet_b1'] # NOTE for train, drop_rate should be 0.2 model = _gen_efficientnet( channel_multiplier=1.0, depth_multiplier=1.1, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def efficientnet_b2(num_classes, in_chans=3, pretrained=False, **kwargs): """ EfficientNet """ default_cfg = default_cfgs['efficientnet_b2'] # NOTE for train, drop_rate should be 0.3 model = _gen_efficientnet( channel_multiplier=1.1, depth_multiplier=1.2, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def efficientnet_b3(num_classes, in_chans=3, pretrained=False, **kwargs): """ EfficientNet """ default_cfg = default_cfgs['efficientnet_b3'] # NOTE for train, drop_rate should be 0.3 model = _gen_efficientnet( channel_multiplier=1.2, depth_multiplier=1.4, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def efficientnet_b4(num_classes, in_chans=3, pretrained=False, **kwargs): """ EfficientNet """ default_cfg = default_cfgs['efficientnet_b4'] # NOTE for train, drop_rate should be 0.4 model = _gen_efficientnet( channel_multiplier=1.4, depth_multiplier=1.8, num_classes=num_classes, in_chans=in_chans, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model def genmobilenet_model_names(): return set(_models)