#!/usr/bin/env python """PyTorch Inference Script An example inference script that outputs top-k class ids for images in a folder into a csv. Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ import os import time import logging import yaml from fire import Fire from addict import Dict import numpy as np import torch from timm.models import create_model, apply_test_time_pool from timm.data import Dataset, create_loader, resolve_data_config from timm.utils import AverageMeter, setup_default_logging torch.backends.cudnn.benchmark = True _logger = logging.getLogger('inference') def _update_config(config, params): for k, v in params.items(): *path, key = k.split(".") config.update({k: v}) print(f"Overwriting {k} = {v} (was {config.get(key)})") return config def _fit(**kwargs): with open('configs/inference.yaml') as stream: base_config = yaml.safe_load(stream) if "config" in kwargs.keys(): cfg_path = kwargs["config"] with open(cfg_path) as cfg: cfg_yaml = yaml.load(cfg, Loader=yaml.FullLoader) merged_cfg = _update_config(base_config, cfg_yaml) else: merged_cfg = base_config update_cfg = _update_config(merged_cfg, kwargs) return update_cfg def _parse_args(): args = Dict(Fire(_fit)) # Cache the args as a text string to save them in the output dir later args_text = yaml.safe_dump(args.__dict__, default_flow_style=False) return args, args_text def main(): setup_default_logging() args, args_text = _parse_args() # might as well try to do something useful... args.pretrained = args.pretrained or not args.checkpoint # create model model = create_model( args.model, num_classes=args.num_classes, in_chans=3, pretrained=args.pretrained, checkpoint_path=args.checkpoint) _logger.info('Model %s created, param count: %d' % (args.model, sum([m.numel() for m in model.parameters()]))) config = resolve_data_config(vars(args), model=model) model, test_time_pool = (model, False) if args.no_test_pool else apply_test_time_pool(model, config) if args.num_gpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda() else: model = model.cuda() loader = create_loader( Dataset(args.data), input_size=config['input_size'], batch_size=args.batch_size, use_prefetcher=True, interpolation=config['interpolation'], mean=config['mean'], std=config['std'], num_workers=args.workers, crop_pct=1.0 if test_time_pool else config['crop_pct']) model.eval() k = min(args.topk, args.num_classes) batch_time = AverageMeter() end = time.time() topk_ids = [] with torch.no_grad(): for batch_idx, (input, _) in enumerate(loader): input = input.cuda() labels = model(input) topk = labels.topk(k)[1] topk_ids.append(topk.cpu().numpy()) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if batch_idx % args.log_freq == 0: _logger.info('Predict: [{0}/{1}] Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format( batch_idx, len(loader), batch_time=batch_time)) topk_ids = np.concatenate(topk_ids, axis=0).squeeze() with open(os.path.join(args.output_dir, './topk_ids.csv'), 'w') as out_file: filenames = loader.dataset.filenames(basename=True) for filename, label in zip(filenames, topk_ids): out_file.write('{0},{1},{2},{3},{4},{5}\n'.format( filename, label[0], label[1], label[2], label[3], label[4])) if __name__ == '__main__': main()