import torch import os from .inception_v4 import inception_v4 from .inception_resnet_v2 import inception_resnet_v2 from .densenet import densenet161, densenet121, densenet169, densenet201 from .resnet import resnet18, resnet34, resnet50, resnet101, resnet152 from .fbresnet200 import fbresnet200 from .dpn import dpn68, dpn68b, dpn92, dpn98, dpn131, dpn107 from .senet import seresnet18, seresnet34, seresnet50, seresnet101, seresnet152, \ seresnext26_32x4d, seresnext50_32x4d, seresnext101_32x4d from .resnext import resnext50, resnext101, resnext152 from .xception import xception from .pnasnet import pnasnet5large model_config_dict = { 'resnet18': { 'model_name': 'resnet18', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'}, 'resnet34': { 'model_name': 'resnet34', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'}, 'resnet50': { 'model_name': 'resnet50', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'}, 'resnet101': { 'model_name': 'resnet101', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'}, 'resnet152': { 'model_name': 'resnet152', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'}, 'densenet121': { 'model_name': 'densenet121', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'}, 'densenet169': { 'model_name': 'densenet169', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'}, 'densenet201': { 'model_name': 'densenet201', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'}, 'densenet161': { 'model_name': 'densenet161', 'num_classes': 1000, 'input_size': 224, 'normalizer': 'tv'}, 'dpn107': { 'model_name': 'dpn107', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'dpn'}, 'dpn92_extra': { 'model_name': 'dpn92', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'dpn'}, 'dpn92': { 'model_name': 'dpn92', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'dpn'}, 'dpn68': { 'model_name': 'dpn68', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'dpn'}, 'dpn68b': { 'model_name': 'dpn68b', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'dpn'}, 'dpn68b_extra': { 'model_name': 'dpn68b', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'dpn'}, 'inception_resnet_v2': { 'model_name': 'inception_resnet_v2', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'le'}, 'xception': { 'model_name': 'xception', 'num_classes': 1000, 'input_size': 299, 'normalizer': 'le'}, 'pnasnet5large': { 'model_name': 'pnasnet5large', 'num_classes': 1000, 'input_size': 331, 'normalizer': 'le'} } def create_model( model_name='resnet50', pretrained=None, num_classes=1000, checkpoint_path='', **kwargs): test_time_pool = kwargs.pop('test_time_pool') if 'test_time_pool' in kwargs else 0 if model_name == 'dpn68': model = dpn68( num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool) elif model_name == 'dpn68b': model = dpn68b( num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool) elif model_name == 'dpn92': model = dpn92( num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool) elif model_name == 'dpn98': model = dpn98( num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool) elif model_name == 'dpn131': model = dpn131( num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool) elif model_name == 'dpn107': model = dpn107( num_classes=num_classes, pretrained=pretrained, test_time_pool=test_time_pool) elif model_name == 'resnet18': model = resnet18(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'resnet34': model = resnet34(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'resnet50': model = resnet50(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'resnet101': model = resnet101(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'resnet152': model = resnet152(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'densenet121': model = densenet121(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'densenet161': model = densenet161(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'densenet169': model = densenet169(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'densenet201': model = densenet201(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'inception_resnet_v2': model = inception_resnet_v2(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'inception_v4': model = inception_v4(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'fbresnet200': model = fbresnet200(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'seresnet18': model = seresnet18(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'seresnet34': model = seresnet34(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'seresnet50': model = seresnet50(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'seresnet101': model = seresnet101(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'seresnet152': model = seresnet152(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'seresnext26_32x4d': model = seresnext26_32x4d(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'seresnext50_32x4d': model = seresnext50_32x4d(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'seresnext101_32x4d': model = seresnext101_32x4d(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'resnext50': model = resnext50(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'resnext101': model = resnext101(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'resnext152': model = resnext152(num_classes=num_classes, pretrained=pretrained, **kwargs) elif model_name == 'xception': model = xception(num_classes=num_classes, pretrained=pretrained) elif model_name == 'pnasnet5large': model = pnasnet5large(num_classes=num_classes, pretrained=pretrained) else: assert False and "Invalid model" if checkpoint_path and not pretrained: print(checkpoint_path) load_checkpoint(model, checkpoint_path) return model def load_checkpoint(model, checkpoint_path): if checkpoint_path is not None and os.path.isfile(checkpoint_path): print('Loading checkpoint', checkpoint_path) checkpoint = torch.load(checkpoint_path) if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: model.load_state_dict(checkpoint['state_dict']) else: model.load_state_dict(checkpoint) else: print("Error: No checkpoint found at %s." % checkpoint_path)