import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import math ## Assembled CNN Tensorflow Impl # # def _bernoulli(shape, mean, seed=None, dtype=tf.float32): # return tf.nn.relu(tf.sign(mean - tf.random_uniform(shape, minval=0, maxval=1, dtype=dtype, seed=seed))) # # # def dropblock(x, keep_prob, block_size, gamma_scale=1.0, seed=None, name=None, # data_format='channels_last', is_training=True): # pylint: disable=invalid-name # """ # Dropblock layer. For more details, refer to https://arxiv.org/abs/1810.12890 # :param x: A floating point tensor. # :param keep_prob: A scalar Tensor with the same type as x. The probability that each element is kept. # :param block_size: The block size to drop # :param gamma_scale: The multiplier to gamma. # :param seed: Python integer. Used to create random seeds. # :param name: A name for this operation (optional) # :param data_format: 'channels_last' or 'channels_first' # :param is_training: If False, do nothing. # :return: A Tensor of the same shape of x. # """ # if not is_training: # return x # # # Early return if nothing needs to be dropped. # if (isinstance(keep_prob, float) and keep_prob == 1) or gamma_scale == 0: # return x # # with tf.name_scope(name, "dropblock", [x]) as name: # if not x.dtype.is_floating: # raise ValueError("x has to be a floating point tensor since it's going to" # " be scaled. Got a %s tensor instead." % x.dtype) # if isinstance(keep_prob, float) and not 0 < keep_prob <= 1: # raise ValueError("keep_prob must be a scalar tensor or a float in the " # "range (0, 1], got %g" % keep_prob) # # br = (block_size - 1) // 2 # tl = (block_size - 1) - br # if data_format == 'channels_last': # _, h, w, c = x.shape.as_list() # sampling_mask_shape = tf.stack([1, h - block_size + 1, w - block_size + 1, c]) # pad_shape = [[0, 0], [tl, br], [tl, br], [0, 0]] # elif data_format == 'channels_first': # _, c, h, w = x.shape.as_list() # sampling_mask_shape = tf.stack([1, c, h - block_size + 1, w - block_size + 1]) # pad_shape = [[0, 0], [0, 0], [tl, br], [tl, br]] # else: # raise NotImplementedError # # gamma = (1. - keep_prob) * (w * h) / (block_size ** 2) / ((w - block_size + 1) * (h - block_size + 1)) # gamma = gamma_scale * gamma # mask = _bernoulli(sampling_mask_shape, gamma, seed, tf.float32) # mask = tf.pad(mask, pad_shape) # # xdtype_mask = tf.cast(mask, x.dtype) # xdtype_mask = tf.layers.max_pooling2d( # inputs=xdtype_mask, pool_size=block_size, # strides=1, padding='SAME', # data_format=data_format) # # xdtype_mask = 1 - xdtype_mask # fp32_mask = tf.cast(xdtype_mask, tf.float32) # ret = tf.multiply(x, xdtype_mask) # float32_mask_size = tf.cast(tf.size(fp32_mask), tf.float32) # float32_mask_reduce_sum = tf.reduce_sum(fp32_mask) # normalize_factor = tf.cast(float32_mask_size / (float32_mask_reduce_sum + 1e-8), x.dtype) # ret = ret * normalize_factor # return ret def drop_block_2d(x, drop_prob=0.1, block_size=7, gamma_scale=1.0, drop_with_noise=False): _, _, height, width = x.shape total_size = width * height clipped_block_size = min(block_size, min(width, height)) # seed_drop_rate, the gamma parameter seed_drop_rate = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( (width - block_size + 1) * (height - block_size + 1)) # Forces the block to be inside the feature map. w_i, h_i = torch.meshgrid(torch.arange(width).to(x.device), torch.arange(height).to(x.device)) valid_block = ((w_i >= clipped_block_size // 2) & (w_i < width - (clipped_block_size - 1) // 2)) & \ ((h_i >= clipped_block_size // 2) & (h_i < height - (clipped_block_size - 1) // 2)) valid_block = torch.reshape(valid_block, (1, 1, height, width)).float() uniform_noise = torch.rand_like(x, dtype=torch.float32) block_mask = ((2 - seed_drop_rate - valid_block + uniform_noise) >= 1).to(dtype=x.dtype) block_mask = -F.max_pool2d( -block_mask, kernel_size=clipped_block_size, # block_size, stride=1, padding=clipped_block_size // 2) if drop_with_noise: normal_noise = torch.randn_like(x) x = x * block_mask + normal_noise * (1 - block_mask) else: normalize_scale = block_mask.numel() / (torch.sum(block_mask, dtype=torch.float32) + 1e-7) x = x * block_mask * normalize_scale return x class DropBlock2d(nn.Module): """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf """ def __init__(self, drop_prob=0.1, block_size=7, gamma_scale=1.0, with_noise=False): super(DropBlock2d, self).__init__() self.drop_prob = drop_prob self.gamma_scale = gamma_scale self.block_size = block_size self.with_noise = with_noise def forward(self, x): if not self.training or not self.drop_prob: return x return drop_block_2d(x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise) def drop_path(x, drop_prob=0.): """Drop paths (Stochastic Depth) per sample (when applied in residual blocks).""" keep_prob = 1 - drop_prob random_tensor = keep_prob + torch.rand((x.size()[0], 1, 1, 1), dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.ModuleDict): def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): if not self.training or not self.drop_prob: return x return drop_path(x, self.drop_prob)