""" Cross-Covariance Image Transformer (XCiT) in PyTorch Paper: - https://arxiv.org/abs/2106.09681 Same as the official implementation, with some minor adaptations, original copyright below - https://github.com/facebookresearch/xcit/blob/master/xcit.py Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. import math from functools import partial import torch import torch.nn as nn from torch.utils.checkpoint import checkpoint from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .helpers import build_model_with_cfg from .vision_transformer import _cfg, Mlp from .registry import register_model from .layers import DropPath, trunc_normal_, to_2tuple from .cait import ClassAttn from .fx_features import register_notrace_module def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj.0.0', 'classifier': 'head', **kwargs } default_cfgs = { # Patch size 16 'xcit_nano_12_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_224.pth'), 'xcit_nano_12_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_224_dist.pth'), 'xcit_nano_12_p16_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_384_dist.pth', input_size=(3, 384, 384)), 'xcit_tiny_12_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_224.pth'), 'xcit_tiny_12_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_224_dist.pth'), 'xcit_tiny_12_p16_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_384_dist.pth', input_size=(3, 384, 384)), 'xcit_tiny_24_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_224.pth'), 'xcit_tiny_24_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_224_dist.pth'), 'xcit_tiny_24_p16_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_384_dist.pth', input_size=(3, 384, 384)), 'xcit_small_12_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224.pth'), 'xcit_small_12_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224_dist.pth'), 'xcit_small_12_p16_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_384_dist.pth', input_size=(3, 384, 384)), 'xcit_small_24_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_224.pth'), 'xcit_small_24_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_224_dist.pth'), 'xcit_small_24_p16_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_384_dist.pth', input_size=(3, 384, 384)), 'xcit_medium_24_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_224.pth'), 'xcit_medium_24_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_224_dist.pth'), 'xcit_medium_24_p16_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_384_dist.pth', input_size=(3, 384, 384)), 'xcit_large_24_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_224.pth'), 'xcit_large_24_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_224_dist.pth'), 'xcit_large_24_p16_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_384_dist.pth', input_size=(3, 384, 384)), # Patch size 8 'xcit_nano_12_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_224.pth'), 'xcit_nano_12_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_224_dist.pth'), 'xcit_nano_12_p8_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_384_dist.pth', input_size=(3, 384, 384)), 'xcit_tiny_12_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_224.pth'), 'xcit_tiny_12_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_224_dist.pth'), 'xcit_tiny_12_p8_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_384_dist.pth', input_size=(3, 384, 384)), 'xcit_tiny_24_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_224.pth'), 'xcit_tiny_24_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_224_dist.pth'), 'xcit_tiny_24_p8_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_384_dist.pth', input_size=(3, 384, 384)), 'xcit_small_12_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_224.pth'), 'xcit_small_12_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_224_dist.pth'), 'xcit_small_12_p8_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_384_dist.pth', input_size=(3, 384, 384)), 'xcit_small_24_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_224.pth'), 'xcit_small_24_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_224_dist.pth'), 'xcit_small_24_p8_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_384_dist.pth', input_size=(3, 384, 384)), 'xcit_medium_24_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_224.pth'), 'xcit_medium_24_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_224_dist.pth'), 'xcit_medium_24_p8_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_384_dist.pth', input_size=(3, 384, 384)), 'xcit_large_24_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_224.pth'), 'xcit_large_24_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_224_dist.pth'), 'xcit_large_24_p8_384_dist': _cfg( url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_384_dist.pth', input_size=(3, 384, 384)), } @register_notrace_module # reason: FX can't symbolically trace torch.arange in forward method class PositionalEncodingFourier(nn.Module): """ Positional encoding relying on a fourier kernel matching the one used in the "Attention is all you Need" paper. Based on the official XCiT code - https://github.com/facebookresearch/xcit/blob/master/xcit.py """ def __init__(self, hidden_dim=32, dim=768, temperature=10000): super().__init__() self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1) self.scale = 2 * math.pi self.temperature = temperature self.hidden_dim = hidden_dim self.dim = dim self.eps = 1e-6 def forward(self, B: int, H: int, W: int): device = self.token_projection.weight.device y_embed = torch.arange(1, H+1, dtype=torch.float32, device=device).unsqueeze(1).repeat(1, 1, W) x_embed = torch.arange(1, W+1, dtype=torch.float32, device=device).repeat(1, H, 1) y_embed = y_embed / (y_embed[:, -1:, :] + self.eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + self.eps) * self.scale dim_t = torch.arange(self.hidden_dim, dtype=torch.float32, device=device) dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack([pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()], dim=4).flatten(3) pos_y = torch.stack([pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()], dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) pos = self.token_projection(pos) return pos.repeat(B, 1, 1, 1) # (B, C, H, W) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution + batch norm""" return torch.nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(out_planes) ) class ConvPatchEmbed(nn.Module): """Image to Patch Embedding using multiple convolutional layers""" def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, act_layer=nn.GELU): super().__init__() img_size = to_2tuple(img_size) num_patches = (img_size[1] // patch_size) * (img_size[0] // patch_size) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches if patch_size == 16: self.proj = torch.nn.Sequential( conv3x3(in_chans, embed_dim // 8, 2), act_layer(), conv3x3(embed_dim // 8, embed_dim // 4, 2), act_layer(), conv3x3(embed_dim // 4, embed_dim // 2, 2), act_layer(), conv3x3(embed_dim // 2, embed_dim, 2), ) elif patch_size == 8: self.proj = torch.nn.Sequential( conv3x3(in_chans, embed_dim // 4, 2), act_layer(), conv3x3(embed_dim // 4, embed_dim // 2, 2), act_layer(), conv3x3(embed_dim // 2, embed_dim, 2), ) else: raise('For convolutional projection, patch size has to be in [8, 16]') def forward(self, x): x = self.proj(x) Hp, Wp = x.shape[2], x.shape[3] x = x.flatten(2).transpose(1, 2) # (B, N, C) return x, (Hp, Wp) class LPI(nn.Module): """ Local Patch Interaction module that allows explicit communication between tokens in 3x3 windows to augment the implicit communication performed by the block diagonal scatter attention. Implemented using 2 layers of separable 3x3 convolutions with GeLU and BatchNorm2d """ def __init__(self, in_features, out_features=None, act_layer=nn.GELU, kernel_size=3): super().__init__() out_features = out_features or in_features padding = kernel_size // 2 self.conv1 = torch.nn.Conv2d( in_features, in_features, kernel_size=kernel_size, padding=padding, groups=in_features) self.act = act_layer() self.bn = nn.BatchNorm2d(in_features) self.conv2 = torch.nn.Conv2d( in_features, out_features, kernel_size=kernel_size, padding=padding, groups=out_features) def forward(self, x, H: int, W: int): B, N, C = x.shape x = x.permute(0, 2, 1).reshape(B, C, H, W) x = self.conv1(x) x = self.act(x) x = self.bn(x) x = self.conv2(x) x = x.reshape(B, C, N).permute(0, 2, 1) return x class ClassAttentionBlock(nn.Module): """Class Attention Layer as in CaiT https://arxiv.org/abs/2103.17239""" def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, eta=1., tokens_norm=False): super().__init__() self.norm1 = norm_layer(dim) self.attn = ClassAttn( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) if eta is not None: # LayerScale Initialization (no layerscale when None) self.gamma1 = nn.Parameter(eta * torch.ones(dim)) self.gamma2 = nn.Parameter(eta * torch.ones(dim)) else: self.gamma1, self.gamma2 = 1.0, 1.0 # See https://github.com/rwightman/pytorch-image-models/pull/747#issuecomment-877795721 self.tokens_norm = tokens_norm def forward(self, x): x_norm1 = self.norm1(x) x_attn = torch.cat([self.attn(x_norm1), x_norm1[:, 1:]], dim=1) x = x + self.drop_path(self.gamma1 * x_attn) if self.tokens_norm: x = self.norm2(x) else: x = torch.cat([self.norm2(x[:, 0:1]), x[:, 1:]], dim=1) x_res = x cls_token = x[:, 0:1] cls_token = self.gamma2 * self.mlp(cls_token) x = torch.cat([cls_token, x[:, 1:]], dim=1) x = x_res + self.drop_path(x) return x class XCA(nn.Module): """ Cross-Covariance Attention (XCA) Operation where the channels are updated using a weighted sum. The weights are obtained from the (softmax normalized) Cross-covariance matrix (Q^T \\cdot K \\in d_h \\times d_h) """ def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape # Result of next line is (qkv, B, num (H)eads, (C')hannels per head, N) qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 4, 1) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) # Paper section 3.2 l2-Normalization and temperature scaling q = torch.nn.functional.normalize(q, dim=-1) k = torch.nn.functional.normalize(k, dim=-1) attn = (q @ k.transpose(-2, -1)) * self.temperature attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) # (B, H, C', N), permute -> (B, N, H, C') x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x @torch.jit.ignore def no_weight_decay(self): return {'temperature'} class XCABlock(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, eta=1.): super().__init__() self.norm1 = norm_layer(dim) self.attn = XCA(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm3 = norm_layer(dim) self.local_mp = LPI(in_features=dim, act_layer=act_layer) self.norm2 = norm_layer(dim) self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) self.gamma1 = nn.Parameter(eta * torch.ones(dim)) self.gamma3 = nn.Parameter(eta * torch.ones(dim)) self.gamma2 = nn.Parameter(eta * torch.ones(dim)) def forward(self, x, H: int, W: int): x = x + self.drop_path(self.gamma1 * self.attn(self.norm1(x))) # NOTE official code has 3 then 2, so keeping it the same to be consistent with loaded weights # See https://github.com/rwightman/pytorch-image-models/pull/747#issuecomment-877795721 x = x + self.drop_path(self.gamma3 * self.local_mp(self.norm3(x), H, W)) x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x))) return x class XCiT(nn.Module): """ Based on timm and DeiT code bases https://github.com/rwightman/pytorch-image-models/tree/master/timm https://github.com/facebookresearch/deit/ """ def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=False): """ Args: img_size (int, tuple): input image size patch_size (int): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True drop_rate (float): dropout rate after positional embedding, and in XCA/CA projection + MLP attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate (constant across all layers) norm_layer: (nn.Module): normalization layer cls_attn_layers: (int) Depth of Class attention layers use_pos_embed: (bool) whether to use positional encoding eta: (float) layerscale initialization value tokens_norm: (bool) Whether to normalize all tokens or just the cls_token in the CA Notes: - Although `layer_norm` is user specifiable, there are hard-coded `BatchNorm2d`s in the local patch interaction (class LPI) and the patch embedding (class ConvPatchEmbed) """ super().__init__() assert global_pool in ('', 'avg', 'token') img_size = to_2tuple(img_size) assert (img_size[0] % patch_size == 0) and (img_size[0] % patch_size == 0), \ '`patch_size` should divide image dimensions evenly' norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim self.global_pool = global_pool self.grad_checkpointing = False self.patch_embed = ConvPatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, act_layer=act_layer) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.use_pos_embed = use_pos_embed if use_pos_embed: self.pos_embed = PositionalEncodingFourier(dim=embed_dim) self.pos_drop = nn.Dropout(p=drop_rate) self.blocks = nn.ModuleList([ XCABlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_rate, act_layer=act_layer, norm_layer=norm_layer, eta=eta) for _ in range(depth)]) self.cls_attn_blocks = nn.ModuleList([ ClassAttentionBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, act_layer=act_layer, norm_layer=norm_layer, eta=eta, tokens_norm=tokens_norm) for _ in range(cls_attn_layers)]) # Classifier head self.norm = norm_layer(embed_dim) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() # Init weights trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^cls_token|pos_embed|patch_embed', # stem and embed blocks=r'^blocks\.(\d+)', cls_attn_blocks=[(r'^cls_attn_blocks\.(\d+)', None), (r'^norm', (99999,))] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes if global_pool is not None: assert global_pool in ('', 'avg', 'token') self.global_pool = global_pool self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): B = x.shape[0] # x is (B, N, C). (Hp, Hw) is (height in units of patches, width in units of patches) x, (Hp, Wp) = self.patch_embed(x) if self.use_pos_embed: # `pos_embed` (B, C, Hp, Wp), reshape -> (B, C, N), permute -> (B, N, C) pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1) x = x + pos_encoding x = self.pos_drop(x) for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint(blk, x, Hp, Wp) else: x = blk(x, Hp, Wp) x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1) for blk in self.cls_attn_blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint(blk, x) else: x = blk(x) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool: x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): if 'model' in state_dict: state_dict = state_dict['model'] # For consistency with timm's transformer models while being compatible with official weights source we rename # pos_embeder to pos_embed. Also account for use_pos_embed == False use_pos_embed = getattr(model, 'pos_embed', None) is not None pos_embed_keys = [k for k in state_dict if k.startswith('pos_embed')] for k in pos_embed_keys: if use_pos_embed: state_dict[k.replace('pos_embeder.', 'pos_embed.')] = state_dict.pop(k) else: del state_dict[k] # timm's implementation of class attention in CaiT is slightly more efficient as it does not compute query vectors # for all tokens, just the class token. To use official weights source we must split qkv into q, k, v if 'cls_attn_blocks.0.attn.qkv.weight' in state_dict and 'cls_attn_blocks.0.attn.q.weight' in model.state_dict(): num_ca_blocks = len(model.cls_attn_blocks) for i in range(num_ca_blocks): qkv_weight = state_dict.pop(f'cls_attn_blocks.{i}.attn.qkv.weight') qkv_weight = qkv_weight.reshape(3, -1, qkv_weight.shape[-1]) for j, subscript in enumerate('qkv'): state_dict[f'cls_attn_blocks.{i}.attn.{subscript}.weight'] = qkv_weight[j] qkv_bias = state_dict.pop(f'cls_attn_blocks.{i}.attn.qkv.bias', None) if qkv_bias is not None: qkv_bias = qkv_bias.reshape(3, -1) for j, subscript in enumerate('qkv'): state_dict[f'cls_attn_blocks.{i}.attn.{subscript}.bias'] = qkv_bias[j] return state_dict def _create_xcit(variant, pretrained=False, default_cfg=None, **kwargs): model = build_model_with_cfg( XCiT, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, **kwargs) return model @register_model def xcit_nano_12_p16_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, **kwargs) model = _create_xcit('xcit_nano_12_p16_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_nano_12_p16_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, **kwargs) model = _create_xcit('xcit_nano_12_p16_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_nano_12_p16_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, img_size=384, **kwargs) model = _create_xcit('xcit_nano_12_p16_384_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_tiny_12_p16_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True, **kwargs) model = _create_xcit('xcit_tiny_12_p16_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_tiny_12_p16_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True, **kwargs) model = _create_xcit('xcit_tiny_12_p16_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_tiny_12_p16_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True, **kwargs) model = _create_xcit('xcit_tiny_12_p16_384_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_small_12_p16_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True, **kwargs) model = _create_xcit('xcit_small_12_p16_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_small_12_p16_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True, **kwargs) model = _create_xcit('xcit_small_12_p16_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_small_12_p16_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True, **kwargs) model = _create_xcit('xcit_small_12_p16_384_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_tiny_24_p16_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_tiny_24_p16_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_tiny_24_p16_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_tiny_24_p16_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_tiny_24_p16_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_tiny_24_p16_384_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_small_24_p16_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_small_24_p16_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_small_24_p16_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_small_24_p16_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_small_24_p16_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_small_24_p16_384_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_medium_24_p16_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_medium_24_p16_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_medium_24_p16_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_medium_24_p16_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_medium_24_p16_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_medium_24_p16_384_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_large_24_p16_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_large_24_p16_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_large_24_p16_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_large_24_p16_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_large_24_p16_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=16, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_large_24_p16_384_dist', pretrained=pretrained, **model_kwargs) return model # Patch size 8x8 models @register_model def xcit_nano_12_p8_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, **kwargs) model = _create_xcit('xcit_nano_12_p8_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_nano_12_p8_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, **kwargs) model = _create_xcit('xcit_nano_12_p8_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_nano_12_p8_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, **kwargs) model = _create_xcit('xcit_nano_12_p8_384_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_tiny_12_p8_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True, **kwargs) model = _create_xcit('xcit_tiny_12_p8_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_tiny_12_p8_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True, **kwargs) model = _create_xcit('xcit_tiny_12_p8_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_tiny_12_p8_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True, **kwargs) model = _create_xcit('xcit_tiny_12_p8_384_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_small_12_p8_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True, **kwargs) model = _create_xcit('xcit_small_12_p8_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_small_12_p8_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True, **kwargs) model = _create_xcit('xcit_small_12_p8_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_small_12_p8_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True, **kwargs) model = _create_xcit('xcit_small_12_p8_384_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_tiny_24_p8_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_tiny_24_p8_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_tiny_24_p8_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_tiny_24_p8_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_tiny_24_p8_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_tiny_24_p8_384_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_small_24_p8_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_small_24_p8_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_small_24_p8_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_small_24_p8_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_small_24_p8_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_small_24_p8_384_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_medium_24_p8_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_medium_24_p8_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_medium_24_p8_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_medium_24_p8_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_medium_24_p8_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_medium_24_p8_384_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_large_24_p8_224(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_large_24_p8_224', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_large_24_p8_224_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_large_24_p8_224_dist', pretrained=pretrained, **model_kwargs) return model @register_model def xcit_large_24_p8_384_dist(pretrained=False, **kwargs): model_kwargs = dict( patch_size=8, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True, **kwargs) model = _create_xcit('xcit_large_24_p8_384_dist', pretrained=pretrained, **model_kwargs) return model