import torch from torch import nn as nn from torch.nn import functional as F _USE_MEM_EFFICIENT_ISH = True if _USE_MEM_EFFICIENT_ISH: # This version reduces memory overhead of Swish during training by # recomputing torch.sigmoid(x) in backward instead of saving it. @torch.jit.script def swish_jit_fwd(x): return x.mul(torch.sigmoid(x)) @torch.jit.script def swish_jit_bwd(x, grad_output): x_sigmoid = torch.sigmoid(x) return grad_output * (x_sigmoid * (1 + x * (1 - x_sigmoid))) class SwishJitAutoFn(torch.autograd.Function): """ torch.jit.script optimised Swish Inspired by conversation btw Jeremy Howard & Adam Pazske https://twitter.com/jeremyphoward/status/1188251041835315200 """ @staticmethod def forward(ctx, x): ctx.save_for_backward(x) return swish_jit_fwd(x) @staticmethod def backward(ctx, grad_output): x = ctx.saved_tensors[0] return swish_jit_bwd(x, grad_output) def swish(x, _inplace=False): return SwishJitAutoFn.apply(x) @torch.jit.script def mish_jit_fwd(x): return x.mul(torch.tanh(F.softplus(x))) @torch.jit.script def mish_jit_bwd(x, grad_output): x_sigmoid = torch.sigmoid(x) x_tanh_sp = F.softplus(x).tanh() return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp)) class MishJitAutoFn(torch.autograd.Function): @staticmethod def forward(ctx, x): ctx.save_for_backward(x) return mish_jit_fwd(x) @staticmethod def backward(ctx, grad_output): x = ctx.saved_tensors[0] return mish_jit_bwd(x, grad_output) def mish(x, _inplace=False): return MishJitAutoFn.apply(x) else: def swish(x, inplace=False): """Swish - Described in: https://arxiv.org/abs/1710.05941 """ return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid()) def mish(x, _inplace=False): """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 """ return x.mul(F.softplus(x).tanh()) class Swish(nn.Module): def __init__(self, inplace=False): super(Swish, self).__init__() self.inplace = inplace def forward(self, x): return swish(x, self.inplace) class Mish(nn.Module): def __init__(self, inplace=False): super(Mish, self).__init__() self.inplace = inplace def forward(self, x): return mish(x, self.inplace) def sigmoid(x, inplace=False): return x.sigmoid_() if inplace else x.sigmoid() # PyTorch has this, but not with a consistent inplace argmument interface class Sigmoid(nn.Module): def __init__(self, inplace=False): super(Sigmoid, self).__init__() self.inplace = inplace def forward(self, x): return x.sigmoid_() if self.inplace else x.sigmoid() def tanh(x, inplace=False): return x.tanh_() if inplace else x.tanh() # PyTorch has this, but not with a consistent inplace argmument interface class Tanh(nn.Module): def __init__(self, inplace=False): super(Tanh, self).__init__() self.inplace = inplace def forward(self, x): return x.tanh_() if self.inplace else x.tanh() def hard_swish(x, inplace=False): inner = F.relu6(x + 3.).div_(6.) return x.mul_(inner) if inplace else x.mul(inner) class HardSwish(nn.Module): def __init__(self, inplace=False): super(HardSwish, self).__init__() self.inplace = inplace def forward(self, x): return hard_swish(x, self.inplace) def hard_sigmoid(x, inplace=False): if inplace: return x.add_(3.).clamp_(0., 6.).div_(6.) else: return F.relu6(x + 3.) / 6. class HardSigmoid(nn.Module): def __init__(self, inplace=False): super(HardSigmoid, self).__init__() self.inplace = inplace def forward(self, x): return hard_sigmoid(x, self.inplace)