import json import logging import os from functools import partial from typing import Union, Optional import torch from torch.hub import load_state_dict_from_url, download_url_to_file, urlparse, HASH_REGEX try: from torch.hub import get_dir except ImportError: from torch.hub import _get_torch_home as get_dir from timm import __version__ try: from huggingface_hub import hf_hub_url from huggingface_hub import cached_download cached_download = partial(cached_download, library_name="timm", library_version=__version__) except ImportError: hf_hub_url = None cached_download = None _logger = logging.getLogger(__name__) def get_cache_dir(child_dir=''): """ Returns the location of the directory where models are cached (and creates it if necessary). """ # Issue warning to move data if old env is set if os.getenv('TORCH_MODEL_ZOO'): _logger.warning('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead') hub_dir = get_dir() child_dir = () if not child_dir else (child_dir,) model_dir = os.path.join(hub_dir, 'checkpoints', *child_dir) os.makedirs(model_dir, exist_ok=True) return model_dir def download_cached_file(url, check_hash=True, progress=False): parts = urlparse(url) filename = os.path.basename(parts.path) cached_file = os.path.join(get_cache_dir(), filename) if not os.path.exists(cached_file): _logger.info('Downloading: "{}" to {}\n'.format(url, cached_file)) hash_prefix = None if check_hash: r = HASH_REGEX.search(filename) # r is Optional[Match[str]] hash_prefix = r.group(1) if r else None download_url_to_file(url, cached_file, hash_prefix, progress=progress) return cached_file def has_hf_hub(necessary=False): if hf_hub_url is None and necessary: # if no HF Hub module installed and it is necessary to continue, raise error raise RuntimeError( 'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.') return hf_hub_url is not None def hf_split(hf_id): rev_split = hf_id.split('@') assert 0 < len(rev_split) <= 2, 'hf_hub id should only contain one @ character to identify revision.' hf_model_id = rev_split[0] hf_revision = rev_split[-1] if len(rev_split) > 1 else None return hf_model_id, hf_revision def load_cfg_from_json(json_file: Union[str, os.PathLike]): with open(json_file, "r", encoding="utf-8") as reader: text = reader.read() return json.loads(text) def _download_from_hf(model_id: str, filename: str): hf_model_id, hf_revision = hf_split(model_id) url = hf_hub_url(hf_model_id, filename, revision=hf_revision) return cached_download(url, cache_dir=get_cache_dir('hf')) def load_model_config_from_hf(model_id: str): assert has_hf_hub(True) cached_file = _download_from_hf(model_id, 'config.json') default_cfg = load_cfg_from_json(cached_file) default_cfg['hf_hub'] = model_id # insert hf_hub id for pretrained weight load during model creation model_name = default_cfg.get('architecture') return default_cfg, model_name def load_state_dict_from_hf(model_id: str): assert has_hf_hub(True) cached_file = _download_from_hf(model_id, 'pytorch_model.bin') state_dict = torch.load(cached_file, map_location='cpu') return state_dict