# Dataset / Model parameters data: 'dataset/splitted' # path to dataset model: 'tf_efficientnet_b0' # Name of model to train (default: "countception") pretrained: True # Start with pretrained version of specified network (if avail) initial_checkpoint: '' # Initialize model from this checkpoint (default: none) resume: '' # Resume full model and optimizer state from checkpoint (default: none) no_resume_opt: False # prevent resume of optimizer state when resuming model num_classes: 2 # number of label classes (default: 1000) gp: null # Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None. img_size: 224 # Image patch size (default: None => model default) crop_pct: null # Input image center crop percent (for validation only) mean: null # Override mean pixel value of dataset std: null # Override std deviation of of dataset interpolation: '' # Image resize interpolation type (overrides model) batch_size: 16 # input batch size for training (default: 32) validation_batch_size_multiplier: 1 # ratio of validation batch size to training batch size (default: 1) # Optimizer parameters opt: 'Adam' # Optimizer (default: "sgd" opt_eps: null # Optimizer Epsilon (default: None, use opt default) opt_betas: null # Optimizer Betas (default: None, use opt default) momentum: 0.9 # Optimizer momentum (default: 0.9) weight_decay: 0.0 # weight decay (default: 0.0001) clip_grad: null # Clip gradient norm (default: None, no clipping) # Learning rate schedule parameters sched: 'plateau' # LR scheduler (default: "step") lr: 0.0001 # learning rate (default: 0.01) lr_noise: null # learning rate noise on/off epoch percentages lr_noise_pct: 0.67 # learning rate noise limit percent (default: 0.67) lr_noise_std: 1.0 # learning rate noise std-dev (default: 1.0) lr_cycle_mul: 1.0 # learning rate cycle len multiplier (default: 1.0) lr_cycle_limit: 1 # learning rate cycle limit warmup_lr: 0.0001 # warmup learning rate (default: 0.0001) min_lr: 0.00001 # lower lr bound for cyclic schedulers that hit 0 (1e-5) epochs: 30 # number of epochs to train (default: 2) start_epoch: null # manual epoch number (useful on restarts) decay_epochs: 5 # epoch interval to decay LR warmup_epochs: 10 # epochs to warmup LR, if scheduler supports cooldown_epochs: 0 # epochs to cooldown LR at min_lr, after cyclic schedule ends patience_epochs: 5 # patience epochs for Plateau LR scheduler (default: 10) decay_rate: 0.1 # LR decay rate (default: 0.1) # Augmentation & regularization parameters no_aug: False # Disable all training augmentation, override other train aug args scale: [1, 1] # Random resize scale (default: 0.08 1.0) ratio: [0.8, 1.2] # Random resize aspect ratio (default: 0.75 1.33) hflip: 0.5 # Horizontal flip training aug probability vflip: 0.0 # Vertical flip training aug probability color_jitter: 0.1 # Color jitter factor (default: 0.4) aa: null # Use AutoAugment policy. "v0" or "original". (default: None) aug_splits: 0 # Number of augmentation splits (default: 0, valid: 0 or >=2) jsd: False # Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`. reprob: 0.0 # Random erase prob (default: 0.) remode: 'const' # Random erase mode (default: "const") recount: 1 # Random erase count (default: 1) resplit: False # Do not random erase first (clean) augmentation split mixup: 0.0 # mixup alpha, mixup enabled if > 0. (default: 0.) cutmix: 0.0 # cutmix alpha, cutmix enabled if > 0. (default: 0. cutmix_minmax: # cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None) mixup_prob: 1.0 # Probability of performing mixup or cutmix when either/both is enabled mixup_switch_prob: 0.5 # Probability of switching to cutmix when both mixup and cutmix enabled mixup_mode: 'batch' # How to apply mixup/cutmix params. Per "batch", "pair", or "elem" mixup_off_epoch: 0 # Turn off mixup after this epoch, disabled if 0 (default: 0) smoothing: 0.0 # Label smoothing (default: 0.1) train_interpolation: 'random' # Training interpolation (random, bilinear, bicubic default: "random" drop: 0.0 # Dropout rate (default: 0.) drop_connect: null # Drop connect rate, DEPRECATED, use drop-path (default: None) drop_path: null # Drop path rate (default: None) drop_block: null # Drop block rate (default: None) # Batch norm parameters (only works with gen_efficientnet based models currently) bn_tf: bull # Use Tensorflow BatchNorm defaults for models that support it (default: False) bn_momentum: null # BatchNorm momentum override (if not None) bn_eps: null # BatchNorm epsilon override (if not None) sync_bn: False # Enable NVIDIA Apex or Torch synchronized BatchNorm. dist_bn: '' # Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "") split_bn: False # Enable separate BN layers per augmentation split. # Model Exponential Moving Average model_ema: False # Enable tracking moving average of model weights model_ema_force_cpu: False # Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation. model_ema_decay: 0.9998 # decay factor for model weights moving average (default: 0.9998) # Misc seed: 42 # random seed (default: 42) log_interval: 50 # how many batches to wait before logging training status recovery_interval: 0 # how many batches to wait before writing recovery checkpoint workers: 1 # how many training processes to use (default: 1) num_gpu: 1 # Number of GPUS to use save_images: False # save images of input bathes every log interval for debugging amp: False # use NVIDIA Apex AMP or Native AMP for mixed precision training apex_amp: False # Use NVIDIA Apex AMP mixed precision native_amp: False # Use Native Torch AMP mixed precision channels_last: False # Use channels_last memory layout pin_mem: False # Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU. no_prefetcher: False # disable fast prefetcher output: '' # path to output folder (default: none, current dir) eval_metric: 'top1' # Best metric (default: "top1" tta: 0 # Test/inference time augmentation (oversampling) factor. 0=None (default: 0) local_rank: 0 # use_multi_epochs_loader: False # use the multi-epochs-loader to save time at the beginning of every epoch