import torch import torch.nn as nn import torch.nn.functional as F from .cross_entropy import LabelSmoothingCrossEntropy class JsdCrossEntropy(nn.Module): """ Jensen-Shannon Divergence + Cross-Entropy Loss Based on impl here: https://github.com/google-research/augmix/blob/master/imagenet.py From paper: 'AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty - https://arxiv.org/abs/1912.02781 Hacked together by / Copyright 2020 Ross Wightman """ def __init__(self, num_splits=3, alpha=12, smoothing=0.1): super().__init__() self.num_splits = num_splits self.alpha = alpha if smoothing is not None and smoothing > 0: self.cross_entropy_loss = LabelSmoothingCrossEntropy(smoothing) else: self.cross_entropy_loss = torch.nn.CrossEntropyLoss() def __call__(self, output, target): split_size = output.shape[0] // self.num_splits assert split_size * self.num_splits == output.shape[0] logits_split = torch.split(output, split_size) # Cross-entropy is only computed on clean images loss = self.cross_entropy_loss(logits_split[0], target[:split_size]) probs = [F.softmax(logits, dim=1) for logits in logits_split] # Clamp mixture distribution to avoid exploding KL divergence logp_mixture = torch.clamp(torch.stack(probs).mean(axis=0), 1e-7, 1).log() loss += self.alpha * sum([F.kl_div( logp_mixture, p_split, reduction='batchmean') for p_split in probs]) / len(probs) return loss