""" Shifted Window Attn This is a WIP experiment to apply windowed attention from the Swin Transformer to a stand-alone module for use as an attn block in conv nets. Based on original swin window code at https://github.com/microsoft/Swin-Transformer Swin Transformer paper: https://arxiv.org/pdf/2103.14030.pdf """ from typing import Optional import torch import torch.nn as nn from .drop import DropPath from .helpers import to_2tuple from .weight_init import trunc_normal_ def window_partition(x, win_size: int): """ Args: x: (B, H, W, C) win_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // win_size, win_size, W // win_size, win_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, win_size, win_size, C) return windows def window_reverse(windows, win_size: int, H: int, W: int): """ Args: windows: (num_windows*B, window_size, window_size, C) win_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / win_size / win_size)) x = windows.view(B, H // win_size, W // win_size, win_size, win_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. win_size (int): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 """ def __init__( self, dim, dim_out=None, feat_size=None, stride=1, win_size=8, shift_size=None, num_heads=8, qkv_bias=True, attn_drop=0.): super().__init__() self.dim_out = dim_out or dim self.feat_size = to_2tuple(feat_size) self.win_size = win_size self.shift_size = shift_size or win_size // 2 if min(self.feat_size) <= win_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.win_size = min(self.feat_size) assert 0 <= self.shift_size < self.win_size, "shift_size must in 0-window_size" self.num_heads = num_heads head_dim = self.dim_out // num_heads self.scale = head_dim ** -0.5 if self.shift_size > 0: # calculate attention mask for SW-MSA H, W = self.feat_size img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 h_slices = ( slice(0, -self.win_size), slice(-self.win_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = ( slice(0, -self.win_size), slice(-self.win_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.win_size) # num_win, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.win_size * self.win_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( # 2 * Wh - 1 * 2 * Ww - 1, nH torch.zeros((2 * self.win_size - 1) * (2 * self.win_size - 1), num_heads)) trunc_normal_(self.relative_position_bias_table, std=.02) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.win_size) coords_w = torch.arange(self.win_size) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.win_size - 1 # shift to start from 0 relative_coords[:, :, 1] += self.win_size - 1 relative_coords[:, :, 0] *= 2 * self.win_size - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, self.dim_out * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.softmax = nn.Softmax(dim=-1) self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity() def reset_parameters(self): trunc_normal_(self.qkv.weight, std=self.qkv.weight.shape[1] ** -0.5) trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self, x): B, C, H, W = x.shape x = x.permute(0, 2, 3, 1) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x # partition windows win_size_sq = self.win_size * self.win_size x_windows = window_partition(shifted_x, self.win_size) # num_win * B, window_size, window_size, C x_windows = x_windows.view(-1, win_size_sq, C) # num_win * B, window_size*window_size, C BW, N, _ = x_windows.shape qkv = self.qkv(x_windows) qkv = qkv.reshape(BW, N, 3, self.num_heads, self.dim_out // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[ self.relative_position_index.view(-1)].view(win_size_sq, win_size_sq, -1) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh * Ww, Wh * Ww attn = attn + relative_position_bias.unsqueeze(0) if self.attn_mask is not None: num_win = self.attn_mask.shape[0] attn = attn.view(B, num_win, self.num_heads, N, N) + self.attn_mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(BW, N, self.dim_out) # merge windows x = x.view(-1, self.win_size, self.win_size, self.dim_out) shifted_x = window_reverse(x, self.win_size, H, W) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x x = x.view(B, H, W, self.dim_out).permute(0, 3, 1, 2) x = self.pool(x) return x