""" Lambda Layer Paper: `LambdaNetworks: Modeling Long-Range Interactions Without Attention` - https://arxiv.org/abs/2102.08602 @misc{2102.08602, Author = {Irwan Bello}, Title = {LambdaNetworks: Modeling Long-Range Interactions Without Attention}, Year = {2021}, } Status: This impl is a WIP. Code snippets in the paper were used as reference but good chance some details are missing/wrong. I've only implemented local lambda conv based pos embeddings. For a PyTorch impl that includes other embedding options checkout https://github.com/lucidrains/lambda-networks Hacked together by / Copyright 2021 Ross Wightman """ import torch from torch import nn import torch.nn.functional as F from .weight_init import trunc_normal_ class LambdaLayer(nn.Module): """Lambda Layer w/ lambda conv position embedding Paper: `LambdaNetworks: Modeling Long-Range Interactions Without Attention` - https://arxiv.org/abs/2102.08602 """ def __init__( self, dim, dim_out=None, stride=1, num_heads=4, dim_head=16, r=7, qkv_bias=False): super().__init__() self.dim = dim self.dim_out = dim_out or dim self.dim_k = dim_head # query depth 'k' self.num_heads = num_heads assert self.dim_out % num_heads == 0, ' should be divided by num_heads' self.dim_v = self.dim_out // num_heads # value depth 'v' self.r = r # relative position neighbourhood (lambda conv kernel size) self.qkv = nn.Conv2d( dim, num_heads * dim_head + dim_head + self.dim_v, kernel_size=1, bias=qkv_bias) self.norm_q = nn.BatchNorm2d(num_heads * dim_head) self.norm_v = nn.BatchNorm2d(self.dim_v) # NOTE currently only supporting the local lambda convolutions for positional self.conv_lambda = nn.Conv3d(1, dim_head, (r, r, 1), padding=(r // 2, r // 2, 0)) self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity() def reset_parameters(self): trunc_normal_(self.qkv.weight, std=self.dim ** -0.5) trunc_normal_(self.conv_lambda.weight, std=self.dim_k ** -0.5) def forward(self, x): B, C, H, W = x.shape M = H * W qkv = self.qkv(x) q, k, v = torch.split(qkv, [ self.num_heads * self.dim_k, self.dim_k, self.dim_v], dim=1) q = self.norm_q(q).reshape(B, self.num_heads, self.dim_k, M).transpose(-1, -2) # B, num_heads, M, K v = self.norm_v(v).reshape(B, self.dim_v, M).transpose(-1, -2) # B, M, V k = F.softmax(k.reshape(B, self.dim_k, M), dim=-1) # B, K, M content_lam = k @ v # B, K, V content_out = q @ content_lam.unsqueeze(1) # B, num_heads, M, V position_lam = self.conv_lambda(v.reshape(B, 1, H, W, self.dim_v)) # B, H, W, V, K position_lam = position_lam.reshape(B, 1, self.dim_k, H * W, self.dim_v).transpose(2, 3) # B, 1, M, K, V position_out = (q.unsqueeze(-2) @ position_lam).squeeze(-2) # B, num_heads, M, V out = (content_out + position_out).transpose(3, 1).reshape(B, C, H, W) # B, C (num_heads * V), H, W out = self.pool(out) return out