""" Squeeze-and-Excitation Channel Attention An SE implementation originally based on PyTorch SE-Net impl. Has since evolved with additional functionality / configuration. Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507 Also included is Effective Squeeze-Excitation (ESE). Paper: `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 Hacked together by / Copyright 2021 Ross Wightman """ from torch import nn as nn from .create_act import create_act_layer from .helpers import make_divisible class SEModule(nn.Module): """ SE Module as defined in original SE-Nets with a few additions Additions include: * divisor can be specified to keep channels % div == 0 (default: 8) * reduction channels can be specified directly by arg (if rd_channels is set) * reduction channels can be specified by float rd_ratio (default: 1/16) * global max pooling can be added to the squeeze aggregation * customizable activation, normalization, and gate layer """ def __init__( self, channels, rd_ratio=1. / 16, rd_channels=None, rd_divisor=8, add_maxpool=False, bias=True, act_layer=nn.ReLU, norm_layer=None, gate_layer='sigmoid'): super(SEModule, self).__init__() self.add_maxpool = add_maxpool if not rd_channels: rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) self.fc1 = nn.Conv2d(channels, rd_channels, kernel_size=1, bias=bias) self.bn = norm_layer(rd_channels) if norm_layer else nn.Identity() self.act = create_act_layer(act_layer, inplace=True) self.fc2 = nn.Conv2d(rd_channels, channels, kernel_size=1, bias=bias) self.gate = create_act_layer(gate_layer) def forward(self, x): x_se = x.mean((2, 3), keepdim=True) if self.add_maxpool: # experimental codepath, may remove or change x_se = 0.5 * x_se + 0.5 * x.amax((2, 3), keepdim=True) x_se = self.fc1(x_se) x_se = self.act(self.bn(x_se)) x_se = self.fc2(x_se) return x * self.gate(x_se) SqueezeExcite = SEModule # alias class EffectiveSEModule(nn.Module): """ 'Effective Squeeze-Excitation From `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 """ def __init__(self, channels, add_maxpool=False, gate_layer='hard_sigmoid', **_): super(EffectiveSEModule, self).__init__() self.add_maxpool = add_maxpool self.fc = nn.Conv2d(channels, channels, kernel_size=1, padding=0) self.gate = create_act_layer(gate_layer) def forward(self, x): x_se = x.mean((2, 3), keepdim=True) if self.add_maxpool: # experimental codepath, may remove or change x_se = 0.5 * x_se + 0.5 * x.amax((2, 3), keepdim=True) x_se = self.fc(x_se) return x * self.gate(x_se) EffectiveSqueezeExcite = EffectiveSEModule # alias class SqueezeExciteCl(nn.Module): """ SE Module as defined in original SE-Nets with a few additions Additions include: * divisor can be specified to keep channels % div == 0 (default: 8) * reduction channels can be specified directly by arg (if rd_channels is set) * reduction channels can be specified by float rd_ratio (default: 1/16) * global max pooling can be added to the squeeze aggregation * customizable activation, normalization, and gate layer """ def __init__( self, channels, rd_ratio=1. / 16, rd_channels=None, rd_divisor=8, bias=True, act_layer=nn.ReLU, gate_layer='sigmoid'): super().__init__() if not rd_channels: rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) self.fc1 = nn.Linear(channels, rd_channels, bias=bias) self.act = create_act_layer(act_layer, inplace=True) self.fc2 = nn.Linear(rd_channels, channels, bias=bias) self.gate = create_act_layer(gate_layer) def forward(self, x): x_se = x.mean((1, 2), keepdims=True) # FIXME avg dim [1:n-1], don't assume 2D NHWC x_se = self.fc1(x_se) x_se = self.act(x_se) x_se = self.fc2(x_se) return x * self.gate(x_se)