""" Bilinear-Attention-Transform and Non-Local Attention Paper: `Non-Local Neural Networks With Grouped Bilinear Attentional Transforms` - https://openaccess.thecvf.com/content_CVPR_2020/html/Chi_Non-Local_Neural_Networks_With_Grouped_Bilinear_Attentional_Transforms_CVPR_2020_paper.html Adapted from original code: https://github.com/BA-Transform/BAT-Image-Classification """ import torch from torch import nn from torch.nn import functional as F from .conv_bn_act import ConvNormAct from .helpers import make_divisible from .trace_utils import _assert class NonLocalAttn(nn.Module): """Spatial NL block for image classification. This was adapted from https://github.com/BA-Transform/BAT-Image-Classification Their NonLocal impl inspired by https://github.com/facebookresearch/video-nonlocal-net. """ def __init__(self, in_channels, use_scale=True, rd_ratio=1/8, rd_channels=None, rd_divisor=8, **kwargs): super(NonLocalAttn, self).__init__() if rd_channels is None: rd_channels = make_divisible(in_channels * rd_ratio, divisor=rd_divisor) self.scale = in_channels ** -0.5 if use_scale else 1.0 self.t = nn.Conv2d(in_channels, rd_channels, kernel_size=1, stride=1, bias=True) self.p = nn.Conv2d(in_channels, rd_channels, kernel_size=1, stride=1, bias=True) self.g = nn.Conv2d(in_channels, rd_channels, kernel_size=1, stride=1, bias=True) self.z = nn.Conv2d(rd_channels, in_channels, kernel_size=1, stride=1, bias=True) self.norm = nn.BatchNorm2d(in_channels) self.reset_parameters() def forward(self, x): shortcut = x t = self.t(x) p = self.p(x) g = self.g(x) B, C, H, W = t.size() t = t.view(B, C, -1).permute(0, 2, 1) p = p.view(B, C, -1) g = g.view(B, C, -1).permute(0, 2, 1) att = torch.bmm(t, p) * self.scale att = F.softmax(att, dim=2) x = torch.bmm(att, g) x = x.permute(0, 2, 1).reshape(B, C, H, W) x = self.z(x) x = self.norm(x) + shortcut return x def reset_parameters(self): for name, m in self.named_modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_( m.weight, mode='fan_out', nonlinearity='relu') if len(list(m.parameters())) > 1: nn.init.constant_(m.bias, 0.0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 0) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.GroupNorm): nn.init.constant_(m.weight, 0) nn.init.constant_(m.bias, 0) class BilinearAttnTransform(nn.Module): def __init__(self, in_channels, block_size, groups, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d): super(BilinearAttnTransform, self).__init__() self.conv1 = ConvNormAct(in_channels, groups, 1, act_layer=act_layer, norm_layer=norm_layer) self.conv_p = nn.Conv2d(groups, block_size * block_size * groups, kernel_size=(block_size, 1)) self.conv_q = nn.Conv2d(groups, block_size * block_size * groups, kernel_size=(1, block_size)) self.conv2 = ConvNormAct(in_channels, in_channels, 1, act_layer=act_layer, norm_layer=norm_layer) self.block_size = block_size self.groups = groups self.in_channels = in_channels def resize_mat(self, x, t: int): B, C, block_size, block_size1 = x.shape _assert(block_size == block_size1, '') if t <= 1: return x x = x.view(B * C, -1, 1, 1) x = x * torch.eye(t, t, dtype=x.dtype, device=x.device) x = x.view(B * C, block_size, block_size, t, t) x = torch.cat(torch.split(x, 1, dim=1), dim=3) x = torch.cat(torch.split(x, 1, dim=2), dim=4) x = x.view(B, C, block_size * t, block_size * t) return x def forward(self, x): _assert(x.shape[-1] % self.block_size == 0, '') _assert(x.shape[-2] % self.block_size == 0, '') B, C, H, W = x.shape out = self.conv1(x) rp = F.adaptive_max_pool2d(out, (self.block_size, 1)) cp = F.adaptive_max_pool2d(out, (1, self.block_size)) p = self.conv_p(rp).view(B, self.groups, self.block_size, self.block_size).sigmoid() q = self.conv_q(cp).view(B, self.groups, self.block_size, self.block_size).sigmoid() p = p / p.sum(dim=3, keepdim=True) q = q / q.sum(dim=2, keepdim=True) p = p.view(B, self.groups, 1, self.block_size, self.block_size).expand(x.size( 0), self.groups, C // self.groups, self.block_size, self.block_size).contiguous() p = p.view(B, C, self.block_size, self.block_size) q = q.view(B, self.groups, 1, self.block_size, self.block_size).expand(x.size( 0), self.groups, C // self.groups, self.block_size, self.block_size).contiguous() q = q.view(B, C, self.block_size, self.block_size) p = self.resize_mat(p, H // self.block_size) q = self.resize_mat(q, W // self.block_size) y = p.matmul(x) y = y.matmul(q) y = self.conv2(y) return y class BatNonLocalAttn(nn.Module): """ BAT Adapted from: https://github.com/BA-Transform/BAT-Image-Classification """ def __init__( self, in_channels, block_size=7, groups=2, rd_ratio=0.25, rd_channels=None, rd_divisor=8, drop_rate=0.2, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, **_): super().__init__() if rd_channels is None: rd_channels = make_divisible(in_channels * rd_ratio, divisor=rd_divisor) self.conv1 = ConvNormAct(in_channels, rd_channels, 1, act_layer=act_layer, norm_layer=norm_layer) self.ba = BilinearAttnTransform(rd_channels, block_size, groups, act_layer=act_layer, norm_layer=norm_layer) self.conv2 = ConvNormAct(rd_channels, in_channels, 1, act_layer=act_layer, norm_layer=norm_layer) self.dropout = nn.Dropout2d(p=drop_rate) def forward(self, x): xl = self.conv1(x) y = self.ba(xl) y = self.conv2(y) y = self.dropout(y) return y + x