""" Halo Self Attention Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones` - https://arxiv.org/abs/2103.12731 @misc{2103.12731, Author = {Ashish Vaswani and Prajit Ramachandran and Aravind Srinivas and Niki Parmar and Blake Hechtman and Jonathon Shlens}, Title = {Scaling Local Self-Attention for Parameter Efficient Visual Backbones}, Year = {2021}, } Status: This impl is a WIP, there is no official ref impl and some details in paper weren't clear to me. The attention mechanism works but it's slow as implemented. Hacked together by / Copyright 2021 Ross Wightman """ from typing import List import torch from torch import nn import torch.nn.functional as F from .helpers import make_divisible from .weight_init import trunc_normal_ from .trace_utils import _assert def rel_logits_1d(q, rel_k, permute_mask: List[int]): """ Compute relative logits along one dimension As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 Args: q: (batch, height, width, dim) rel_k: (2 * window - 1, dim) permute_mask: permute output dim according to this """ B, H, W, dim = q.shape rel_size = rel_k.shape[0] win_size = (rel_size + 1) // 2 x = (q @ rel_k.transpose(-1, -2)) x = x.reshape(-1, W, rel_size) # pad to shift from relative to absolute indexing x_pad = F.pad(x, [0, 1]).flatten(1) x_pad = F.pad(x_pad, [0, rel_size - W]) # reshape and slice out the padded elements x_pad = x_pad.reshape(-1, W + 1, rel_size) x = x_pad[:, :W, win_size - 1:] # reshape and tile x = x.reshape(B, H, 1, W, win_size).expand(-1, -1, win_size, -1, -1) return x.permute(permute_mask) class PosEmbedRel(nn.Module): """ Relative Position Embedding As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 """ def __init__(self, block_size, win_size, dim_head, scale): """ Args: block_size (int): block size win_size (int): neighbourhood window size dim_head (int): attention head dim scale (float): scale factor (for init) """ super().__init__() self.block_size = block_size self.dim_head = dim_head self.height_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * scale) self.width_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * scale) def forward(self, q): B, BB, HW, _ = q.shape # relative logits in width dimension. q = q.reshape(-1, self.block_size, self.block_size, self.dim_head) rel_logits_w = rel_logits_1d(q, self.width_rel, permute_mask=(0, 1, 3, 2, 4)) # relative logits in height dimension. q = q.transpose(1, 2) rel_logits_h = rel_logits_1d(q, self.height_rel, permute_mask=(0, 3, 1, 4, 2)) rel_logits = rel_logits_h + rel_logits_w rel_logits = rel_logits.reshape(B, BB, HW, -1) return rel_logits class HaloAttn(nn.Module): """ Halo Attention Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones` - https://arxiv.org/abs/2103.12731 The internal dimensions of the attention module are controlled by the interaction of several arguments. * the output dimension of the module is specified by dim_out, which falls back to input dim if not set * the value (v) dimension is set to dim_out // num_heads, the v projection determines the output dim * the query and key (qk) dimensions are determined by * num_heads * dim_head if dim_head is not None * num_heads * (dim_out * attn_ratio // num_heads) if dim_head is None * as seen above, attn_ratio determines the ratio of q and k relative to the output if dim_head not used Args: dim (int): input dimension to the module dim_out (int): output dimension of the module, same as dim if not set feat_size (Tuple[int, int]): size of input feature_map (not used, for arg compat with bottle/lambda) stride: output stride of the module, query downscaled if > 1 (default: 1). num_heads: parallel attention heads (default: 8). dim_head: dimension of query and key heads, calculated from dim_out * attn_ratio // num_heads if not set block_size (int): size of blocks. (default: 8) halo_size (int): size of halo overlap. (default: 3) qk_ratio (float): ratio of q and k dimensions to output dimension when dim_head not set. (default: 1.0) qkv_bias (bool) : add bias to q, k, and v projections avg_down (bool): use average pool downsample instead of strided query blocks scale_pos_embed (bool): scale the position embedding as well as Q @ K """ def __init__( self, dim, dim_out=None, feat_size=None, stride=1, num_heads=8, dim_head=None, block_size=8, halo_size=3, qk_ratio=1.0, qkv_bias=False, avg_down=False, scale_pos_embed=False): super().__init__() dim_out = dim_out or dim assert dim_out % num_heads == 0 assert stride in (1, 2) self.num_heads = num_heads self.dim_head_qk = dim_head or make_divisible(dim_out * qk_ratio, divisor=8) // num_heads self.dim_head_v = dim_out // self.num_heads self.dim_out_qk = num_heads * self.dim_head_qk self.dim_out_v = num_heads * self.dim_head_v self.scale = self.dim_head_qk ** -0.5 self.scale_pos_embed = scale_pos_embed self.block_size = self.block_size_ds = block_size self.halo_size = halo_size self.win_size = block_size + halo_size * 2 # neighbourhood window size self.block_stride = 1 use_avg_pool = False if stride > 1: use_avg_pool = avg_down or block_size % stride != 0 self.block_stride = 1 if use_avg_pool else stride self.block_size_ds = self.block_size // self.block_stride # FIXME not clear if this stride behaviour is what the paper intended # Also, the paper mentions using a 3D conv for dealing with the blocking/gather, and leaving # data in unfolded block form. I haven't wrapped my head around how that'd look. self.q = nn.Conv2d(dim, self.dim_out_qk, 1, stride=self.block_stride, bias=qkv_bias) self.kv = nn.Conv2d(dim, self.dim_out_qk + self.dim_out_v, 1, bias=qkv_bias) self.pos_embed = PosEmbedRel( block_size=self.block_size_ds, win_size=self.win_size, dim_head=self.dim_head_qk, scale=self.scale) self.pool = nn.AvgPool2d(2, 2) if use_avg_pool else nn.Identity() self.reset_parameters() def reset_parameters(self): std = self.q.weight.shape[1] ** -0.5 # fan-in trunc_normal_(self.q.weight, std=std) trunc_normal_(self.kv.weight, std=std) trunc_normal_(self.pos_embed.height_rel, std=self.scale) trunc_normal_(self.pos_embed.width_rel, std=self.scale) def forward(self, x): B, C, H, W = x.shape _assert(H % self.block_size == 0, '') _assert(W % self.block_size == 0, '') num_h_blocks = H // self.block_size num_w_blocks = W // self.block_size num_blocks = num_h_blocks * num_w_blocks q = self.q(x) # unfold q = q.reshape( -1, self.dim_head_qk, num_h_blocks, self.block_size_ds, num_w_blocks, self.block_size_ds).permute(0, 1, 3, 5, 2, 4) # B, num_heads * dim_head * block_size ** 2, num_blocks q = q.reshape(B * self.num_heads, self.dim_head_qk, -1, num_blocks).transpose(1, 3) # B * num_heads, num_blocks, block_size ** 2, dim_head kv = self.kv(x) # Generate overlapping windows for kv. This approach is good for GPU and CPU. However, unfold() is not # lowered for PyTorch XLA so it will be very slow. See code at bottom of file for XLA friendly approach. # FIXME figure out how to switch impl between this and conv2d if XLA being used. kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size]) kv = kv.unfold(2, self.win_size, self.block_size).unfold(3, self.win_size, self.block_size).reshape( B * self.num_heads, self.dim_head_qk + self.dim_head_v, num_blocks, -1).permute(0, 2, 3, 1) k, v = torch.split(kv, [self.dim_head_qk, self.dim_head_v], dim=-1) # B * num_heads, num_blocks, win_size ** 2, dim_head_qk or dim_head_v if self.scale_pos_embed: attn = (q @ k.transpose(-1, -2) + self.pos_embed(q)) * self.scale else: attn = (q @ k.transpose(-1, -2)) * self.scale + self.pos_embed(q) # B * num_heads, num_blocks, block_size ** 2, win_size ** 2 attn = attn.softmax(dim=-1) out = (attn @ v).transpose(1, 3) # B * num_heads, dim_head_v, block_size ** 2, num_blocks # fold out = out.reshape(-1, self.block_size_ds, self.block_size_ds, num_h_blocks, num_w_blocks) out = out.permute(0, 3, 1, 4, 2).contiguous().view( B, self.dim_out_v, H // self.block_stride, W // self.block_stride) # B, dim_out, H // block_stride, W // block_stride out = self.pool(out) return out """ Three alternatives for overlapping windows. `.unfold().unfold()` is same speed as stride tricks with similar clarity as F.unfold() if is_xla: # This code achieves haloing on PyTorch XLA with reasonable runtime trade-off, it is # EXTREMELY slow for backward on a GPU though so I need a way of selecting based on environment. WW = self.win_size ** 2 pw = torch.eye(WW, dtype=x.dtype, device=x.device).reshape(WW, 1, self.win_size, self.win_size) kv = F.conv2d(kv.reshape(-1, 1, H, W), pw, stride=self.block_size, padding=self.halo_size) elif self.stride_tricks: kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size]).contiguous() kv = kv.as_strided(( B, self.dim_out_qk + self.dim_out_v, self.win_size, self.win_size, num_h_blocks, num_w_blocks), stride=(kv.stride(0), kv.stride(1), kv.shape[-1], 1, self.block_size * kv.shape[-1], self.block_size)) else: kv = F.unfold(kv, kernel_size=self.win_size, stride=self.block_size, padding=self.halo_size) kv = kv.reshape( B * self.num_heads, self.dim_head_qk + self.dim_head_v, -1, num_blocks).transpose(1, 3) """