""" Random Erasing (Cutout) Originally inspired by impl at https://github.com/zhunzhong07/Random-Erasing, Apache 2.0 Copyright Zhun Zhong & Liang Zheng Hacked together by / Copyright 2020 Ross Wightman """ import random import math import torch def _get_pixels(per_pixel, rand_color, patch_size, dtype=torch.float32, device='cuda'): # NOTE I've seen CUDA illegal memory access errors being caused by the normal_() # paths, flip the order so normal is run on CPU if this becomes a problem # Issue has been fixed in master https://github.com/pytorch/pytorch/issues/19508 if per_pixel: return torch.empty(patch_size, dtype=dtype, device=device).normal_() elif rand_color: return torch.empty((patch_size[0], 1, 1), dtype=dtype, device=device).normal_() else: return torch.zeros((patch_size[0], 1, 1), dtype=dtype, device=device) class RandomErasing: """ Randomly selects a rectangle region in an image and erases its pixels. 'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf This variant of RandomErasing is intended to be applied to either a batch or single image tensor after it has been normalized by dataset mean and std. Args: probability: Probability that the Random Erasing operation will be performed. min_area: Minimum percentage of erased area wrt input image area. max_area: Maximum percentage of erased area wrt input image area. min_aspect: Minimum aspect ratio of erased area. mode: pixel color mode, one of 'const', 'rand', or 'pixel' 'const' - erase block is constant color of 0 for all channels 'rand' - erase block is same per-channel random (normal) color 'pixel' - erase block is per-pixel random (normal) color count: maximum number of erasing blocks per image, area per box is scaled by count. per-image count is randomly chosen between 1 and this value. """ def __init__( self, probability=0.5, min_area=0.02, max_area=1/3, min_aspect=0.3, max_aspect=None, mode='const', count=1, num_splits=0): self.probability = probability self.min_area = min_area self.max_area = max_area max_aspect = max_aspect or 1 / min_aspect self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) self.count = count self.num_splits = num_splits mode = mode.lower() self.rand_color = False self.per_pixel = False if mode == 'rand': self.rand_color = True # per block random normal elif mode == 'pixel': self.per_pixel = True # per pixel random normal else: assert not mode or mode == 'const' def _erase(self, img, chan, img_h, img_w, dtype): device = img.device if random.random() > self.probability: return area = img_h * img_w count = random.randint(1, self.count) if self.count > 1 else self.count for _ in range(count): for attempt in range(10): target_area = random.uniform(self.min_area, self.max_area) * area / count aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < img_w and h < img_h: top = random.randint(0, img_h - h) left = random.randint(0, img_w - w) img[:, top:top + h, left:left + w] = _get_pixels( self.per_pixel, self.rand_color, (chan, h, w), dtype=dtype, device=device) break def __call__(self, x): if len(x.size()) == 3: self._erase(x, *x.shape, x.dtype) else: batch_size, chan, img_h, img_w = x.shape # skip first slice of batch if num_splits is set (for clean portion of samples) batch_start = batch_size // self.num_splits if self.num_splits > 1 else 0 for i in range(batch_start, batch_size): self._erase(x[i], chan, img_h, img_w, x.dtype) return x class RandomErasingMasked: """ Randomly selects a rectangle region in an image and erases its pixels. 'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf This variant of RandomErasing is intended to be applied to either a batch or single image tensor after it has been normalized by dataset mean and std. Args: probability: Probability that the Random Erasing operation will be performed for each box (count) min_area: Minimum percentage of erased area wrt input image area. max_area: Maximum percentage of erased area wrt input image area. min_aspect: Minimum aspect ratio of erased area. count: maximum number of erasing blocks per image, area per box is scaled by count. per-image count is between 0 and this value. """ def __init__( self, probability=0.5, min_area=0.02, max_area=1/3, min_aspect=0.3, max_aspect=None, mode='const', count=1, num_splits=0): self.probability = probability self.min_area = min_area self.max_area = max_area max_aspect = max_aspect or 1 / min_aspect self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) self.mode = mode # FIXME currently ignored, add back options besides normal mean=0, std=1 noise? self.count = count self.num_splits = num_splits @torch.no_grad() def __call__(self, x: torch.Tensor) -> torch.Tensor: device = x.device batch_size, _, img_h, img_w = x.shape batch_start = batch_size // self.num_splits if self.num_splits > 1 else 0 # NOTE simplified from v1 with with one count value and same prob applied for all enable = (torch.empty((batch_size, self.count), device=device).uniform_() < self.probability).float() enable = enable / enable.sum(dim=1, keepdim=True).clamp(min=1) target_area = torch.empty( (batch_size, self.count), device=device).uniform_(self.min_area, self.max_area) * enable aspect_ratio = torch.empty((batch_size, self.count), device=device).uniform_(*self.log_aspect_ratio).exp() h_coord = torch.arange(0, img_h, device=device).unsqueeze(-1).expand(-1, self.count).float() w_coord = torch.arange(0, img_w, device=device).unsqueeze(-1).expand(-1, self.count).float() h_mid = torch.rand((batch_size, self.count), device=device) * img_h w_mid = torch.rand((batch_size, self.count), device=device) * img_w noise = torch.empty_like(x[0]).normal_() for i in range(batch_start, batch_size): h_half = (img_h / 2) * torch.sqrt(target_area[i] * aspect_ratio[i]) # 1/2 box h h_mask = (h_coord > (h_mid[i] - h_half)) & (h_coord < (h_mid[i] + h_half)) w_half = (img_w / 2) * torch.sqrt(target_area[i] / aspect_ratio[i]) # 1/2 box w w_mask = (w_coord > (w_mid[i] - w_half)) & (w_coord < (w_mid[i] + w_half)) #mask = (h_mask.unsqueeze(1) & w_mask.unsqueeze(0)).any(dim=-1) #x[i].copy_(torch.where(mask, noise, x[i])) mask = ~(h_mask.unsqueeze(1) & w_mask.unsqueeze(0)).any(dim=-1) x[i] = x[i].where(mask, noise) #x[i].masked_scatter_(mask, noise) return x