from torchbench.image_classification import ImageNet from timm import create_model from timm.data import resolve_data_config, create_transform from timm.models import TestTimePoolHead import os NUM_GPU = 1 BATCH_SIZE = 256 * NUM_GPU def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE, ttp=False, args=dict(), model_desc=None): return dict( model=model_name, model_description=model_desc, paper_model_name=paper_model_name, paper_arxiv_id=paper_arxiv_id, batch_size=batch_size, ttp=ttp, args=args) # NOTE For any original PyTorch models, I'll remove from this list when you add to sotabench to # avoid overlap and confusion. Please contact me. model_list = [ ## Weights ported by myself from other frameworks or trained myself in PyTorch _entry('adv_inception_v3', 'Adversarial Inception V3', '1611.01236', model_desc='Ported from official Tensorflow weights'), _entry('ens_adv_inception_resnet_v2', 'Ensemble Adversarial Inception V3', '1705.07204', model_desc='Ported from official Tensorflow weights'), _entry('dpn68', 'DPN-68 (224x224)', '1707.01629'), _entry('dpn68b', 'DPN-68b (224x224)', '1707.01629'), _entry('dpn92', 'DPN-92 (224x224)', '1707.01629'), _entry('dpn98', 'DPN-98 (224x224)', '1707.01629'), _entry('dpn107', 'DPN-107 (224x224)', '1707.01629'), _entry('dpn131', 'DPN-131 (224x224)', '1707.01629'), _entry('dpn68', 'DPN-68 (320x320, Mean-Max Pooling)', '1707.01629', ttp=True, args=dict(img_size=320)), _entry('dpn68b', 'DPN-68b (320x320, Mean-Max Pooling)', '1707.01629', ttp=True, args=dict(img_size=320)), _entry('dpn92', 'DPN-92 (320x320, Mean-Max Pooling)', '1707.01629', ttp=True, args=dict(img_size=320), batch_size=BATCH_SIZE//2), _entry('dpn98', 'DPN-98 (320x320, Mean-Max Pooling)', '1707.01629', ttp=True, args=dict(img_size=320), batch_size=BATCH_SIZE//2), _entry('dpn107', 'DPN-107 (320x320, Mean-Max Pooling)', '1707.01629', ttp=True, args=dict(img_size=320), batch_size=BATCH_SIZE//4), _entry('dpn131', 'DPN-131 (320x320, Mean-Max Pooling)', '1707.01629', ttp=True, args=dict(img_size=320), batch_size=BATCH_SIZE//4), _entry('efficientnet_b0', 'EfficientNet-B0', '1905.11946'), _entry('efficientnet_b1', 'EfficientNet-B1', '1905.11946'), _entry('efficientnet_b2', 'EfficientNet-B2', '1905.11946'), _entry('fbnetc_100', 'FBNet-C', '1812.03443', model_desc='Trained in PyTorch with RMSProp, exponential LR decay'), _entry('gluon_inception_v3', 'Inception V3', '1512.00567', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet18_v1b', 'ResNet-18', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet34_v1b', 'ResNet-34', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet50_v1b', 'ResNet-50', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet50_v1c', 'ResNet-50-C', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet50_v1d', 'ResNet-50-D', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet50_v1s', 'ResNet-50-S', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet101_v1b', 'ResNet-101', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet101_v1c', 'ResNet-101-C', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet101_v1d', 'ResNet-101-D', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet101_v1s', 'ResNet-101-S', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet152_v1b', 'ResNet-152', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet152_v1c', 'ResNet-152-C', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet152_v1d', 'ResNet-152-D', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnet152_v1s', 'ResNet-152-S', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnext50_32x4d', 'ResNeXt-50 32x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnext101_32x4d', 'ResNeXt-101 32x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_resnext101_64x4d', 'ResNeXt-101 64x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_senet154', 'SENet-154', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_seresnext50_32x4d', 'SE-ResNeXt-50 32x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_seresnext101_32x4d', 'SE-ResNeXt-101 32x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_seresnext101_64x4d', 'SE-ResNeXt-101 64x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'), _entry('gluon_xception65', 'Modified Aligned Xception', '1802.02611', batch_size=BATCH_SIZE//2, model_desc='Ported from GluonCV Model Zoo'), _entry('mixnet_xl', 'MixNet-XL', '1907.09595', model_desc="My own scaling beyond paper's MixNet Large"), _entry('mixnet_l', 'MixNet-L', '1907.09595'), _entry('mixnet_m', 'MixNet-M', '1907.09595'), _entry('mixnet_s', 'MixNet-S', '1907.09595'), _entry('mnasnet_100', 'MnasNet-B1', '1807.11626'), _entry('mobilenetv3_100', 'MobileNet V3(1.0)', '1905.02244', model_desc='Trained in PyTorch with RMSProp, exponential LR decay, and hyper-params matching ' 'paper as closely as possible.'), _entry('resnet18', 'ResNet-18', '1812.01187'), _entry('resnet26', 'ResNet-26', '1812.01187', model_desc='Block cfg of ResNet-34 w/ Bottleneck'), _entry('resnet26d', 'ResNet-26-D', '1812.01187', model_desc='Block cfg of ResNet-34 w/ Bottleneck, deep stem, and avg-pool in downsample layers.'), _entry('resnet34', 'ResNet-34', '1812.01187'), _entry('resnet50', 'ResNet-50', '1812.01187'), _entry('resnext50_32x4d', 'ResNeXt-50 32x4d', '1812.01187'), _entry('resnext50d_32x4d', 'ResNeXt-50-D 32x4d', '1812.01187', model_desc="'D' variant (3x3 deep stem w/ avg-pool downscale). Trained with " "SGD w/ cosine LR decay, random-erasing (gaussian per-pixel noise) and label-smoothing"), _entry('semnasnet_100', 'MnasNet-A1', '1807.11626'), _entry('seresnet18', 'SE-ResNet-18', '1709.01507'), _entry('seresnet34', 'SE-ResNet-34', '1709.01507'), _entry('seresnext26_32x4d', 'SE-ResNeXt-26 32x4d', '1709.01507', model_desc='Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep stem, and avg-pool in downsample layers.'), _entry('spnasnet_100', 'Single-Path NAS', '1904.02877', model_desc='Trained in PyTorch with SGD, cosine LR decay'), _entry('tf_efficientnet_b0', 'EfficientNet-B0 (AutoAugment)', '1905.11946', model_desc='Ported from official Google AI Tensorflow weights'), _entry('tf_efficientnet_b1', 'EfficientNet-B1 (AutoAugment)', '1905.11946', model_desc='Ported from official Google AI Tensorflow weights'), _entry('tf_efficientnet_b2', 'EfficientNet-B2 (AutoAugment)', '1905.11946', model_desc='Ported from official Google AI Tensorflow weights'), _entry('tf_efficientnet_b3', 'EfficientNet-B3 (AutoAugment)', '1905.11946', batch_size=BATCH_SIZE//2, model_desc='Ported from official Google AI Tensorflow weights'), _entry('tf_efficientnet_b4', 'EfficientNet-B4 (AutoAugment)', '1905.11946', batch_size=BATCH_SIZE//2, model_desc='Ported from official Google AI Tensorflow weights'), _entry('tf_efficientnet_b5', 'EfficientNet-B5 (AutoAugment)', '1905.11946', batch_size=BATCH_SIZE//4, model_desc='Ported from official Google AI Tensorflow weights'), _entry('tf_efficientnet_b6', 'EfficientNet-B6 (AutoAugment)', '1905.11946', batch_size=BATCH_SIZE//8, model_desc='Ported from official Google AI Tensorflow weights'), _entry('tf_efficientnet_b7', 'EfficientNet-B7 (AutoAugment)', '1905.11946', batch_size=BATCH_SIZE//8, model_desc='Ported from official Google AI Tensorflow weights'), _entry('tf_efficientnet_es', 'EfficientNet-EdgeTPU-S', '1905.11946', model_desc='Ported from official Google AI Tensorflow weights'), _entry('tf_efficientnet_em', 'EfficientNet-EdgeTPU-M', '1905.11946', model_desc='Ported from official Google AI Tensorflow weights'), _entry('tf_efficientnet_el', 'EfficientNet-EdgeTPU-L', '1905.11946', batch_size=BATCH_SIZE//2, model_desc='Ported from official Google AI Tensorflow weights'), _entry('tf_inception_v3', 'Inception V3', '1512.00567', model_desc='Ported from official Tensorflow weights'), _entry('tf_mixnet_l', 'MixNet-L', '1907.09595', model_desc='Ported from official Google AI Tensorflow weights'), _entry('tf_mixnet_m', 'MixNet-M', '1907.09595', model_desc='Ported from official Google AI Tensorflow weights'), _entry('tf_mixnet_s', 'MixNet-S', '1907.09595', model_desc='Ported from official Google AI Tensorflow weights'), ## Cadene ported weights (to remove if Cadene adds sotabench) _entry('inception_resnet_v2', 'Inception ResNet V2', '1602.07261'), _entry('inception_v4', 'Inception V4', '1602.07261'), _entry('nasnetalarge', 'NASNet-A Large', '1707.07012', batch_size=BATCH_SIZE // 4), _entry('pnasnet5large', 'PNASNet-5', '1712.00559', batch_size=BATCH_SIZE // 4), _entry('seresnet50', 'SE-ResNet-50', '1709.01507'), _entry('seresnet101', 'SE-ResNet-101', '1709.01507'), _entry('seresnet152', 'SE-ResNet-152', '1709.01507'), _entry('seresnext50_32x4d', 'SE-ResNeXt-50 32x4d', '1709.01507'), _entry('seresnext101_32x4d', 'SE-ResNeXt-101 32x4d', '1709.01507'), _entry('senet154', 'SENet-154', '1709.01507'), _entry('xception', 'Xception', '1610.02357', batch_size=BATCH_SIZE//2), ## Torchvision weights # _entry('densenet121'), # _entry('densenet161'), # _entry('densenet169'), # _entry('densenet201'), # _entry('inception_v3', paper_model_name='Inception V3', ), # _entry('tv_resnet34', , ), # _entry('tv_resnet50', , ), # _entry('resnet101', , ), # _entry('resnet152', , ), # _entry('tv_resnext50_32x4d', , ), # _entry('resnext101_32x8d', ), # _entry('wide_resnet50_2' , ), # _entry('wide_resnet101_2', , ), ## Facebook WSL weights _entry('ig_resnext101_32x8d', 'ResNeXt-101 32x8d', '1805.00932'), _entry('ig_resnext101_32x16d', 'ResNeXt-101 32x16d', '1805.00932'), _entry('ig_resnext101_32x32d', 'ResNeXt-101 32x32d', '1805.00932', batch_size=BATCH_SIZE // 2), _entry('ig_resnext101_32x48d', 'ResNeXt-101 32x48d', '1805.00932', batch_size=BATCH_SIZE // 4), _entry('ig_resnext101_32x8d', 'ResNeXt-101 32x8d (288x288 Mean-Max Pooling)', '1805.00932', ttp=True, args=dict(img_size=288)), _entry('ig_resnext101_32x16d', 'ResNeXt-101 32x16d (288x288 Mean-Max Pooling)', '1805.00932', ttp=True, args=dict(img_size=288), batch_size=BATCH_SIZE // 2), _entry('ig_resnext101_32x32d', 'ResNeXt-101 32x32d (288x288 Mean-Max Pooling)', '1805.00932', ttp=True, args=dict(img_size=288), batch_size=BATCH_SIZE // 4), _entry('ig_resnext101_32x48d', 'ResNeXt-101 32x48d (288x288 Mean-Max Pooling)', '1805.00932', ttp=True, args=dict(img_size=288), batch_size=BATCH_SIZE // 8), ## DLA official impl weights (to remove if sotabench added to source) _entry('dla34', 'DLA-34', '1707.06484'), _entry('dla46_c', 'DLA-46-C', '1707.06484'), _entry('dla46x_c', 'DLA-X-46-C', '1707.06484'), _entry('dla60x_c', 'DLA-X-60-C', '1707.06484'), _entry('dla60', 'DLA-60', '1707.06484'), _entry('dla60x', 'DLA-X-60', '1707.06484'), _entry('dla102', 'DLA-102', '1707.06484'), _entry('dla102x', 'DLA-X-102', '1707.06484'), _entry('dla102x2', 'DLA-X-102 64', '1707.06484'), _entry('dla169', 'DLA-169', '1707.06484'), ## Res2Net official impl weights (to remove if sotabench added to source) _entry('res2net50_26w_4s', 'Res2Net-50 26x4s', '1904.01169'), _entry('res2net50_14w_8s', 'Res2Net-50 14x8s', '1904.01169'), _entry('res2net50_26w_6s', 'Res2Net-50 26x6s', '1904.01169'), _entry('res2net50_26w_8s', 'Res2Net-50 26x8s', '1904.01169'), _entry('res2net50_48w_2s', 'Res2Net-50 48x2s', '1904.01169'), _entry('res2net101_26w_4s', 'Res2NeXt-101 26x4s', '1904.01169'), _entry('res2next50', 'Res2NeXt-50', '1904.01169'), _entry('dla60_res2net', 'Res2Net-DLA-60', '1904.01169'), _entry('dla60_res2next', 'Res2NeXt-DLA-60', '1904.01169'), ] for m in model_list: model_name = m['model'] # create model from name model = create_model(model_name, pretrained=True) param_count = sum([m.numel() for m in model.parameters()]) print('Model %s, %s created. Param count: %d' % (model_name, m['paper_model_name'], param_count)) # get appropriate transform for model's default pretrained config data_config = resolve_data_config(m['args'], model=model, verbose=True) if m['ttp']: model = TestTimePoolHead(model, model.default_cfg['pool_size']) data_config['crop_pct'] = 1.0 input_transform = create_transform(**data_config) # Run the benchmark ImageNet.benchmark( model=model, model_description=m.get('model_description', None), paper_model_name=m['paper_model_name'], paper_arxiv_id=m['paper_arxiv_id'], input_transform=input_transform, batch_size=m['batch_size'], num_gpu=NUM_GPU, data_root=os.environ.get('IMAGENET_DIR', './imagenet') )