""" Mixup and Cutmix Papers: mixup: Beyond Empirical Risk Minimization (https://arxiv.org/abs/1710.09412) CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features (https://arxiv.org/abs/1905.04899) Code Reference: CutMix: https://github.com/clovaai/CutMix-PyTorch Hacked together by Ross Wightman """ import numpy as np import torch import math from enum import IntEnum class MixupMode(IntEnum): MIXUP = 0 CUTMIX = 1 RANDOM = 2 @classmethod def from_str(cls, value): return cls[value.upper()] def one_hot(x, num_classes, on_value=1., off_value=0., device='cuda'): x = x.long().view(-1, 1) return torch.full((x.size()[0], num_classes), off_value, device=device).scatter_(1, x, on_value) def mixup_target(target, num_classes, lam=1., smoothing=0.0, device='cuda'): off_value = smoothing / num_classes on_value = 1. - smoothing + off_value y1 = one_hot(target, num_classes, on_value=on_value, off_value=off_value, device=device) y2 = one_hot(target.flip(0), num_classes, on_value=on_value, off_value=off_value, device=device) return y1 * lam + y2 * (1. - lam) def mixup_batch(input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disable=False): lam = 1. if not disable: lam = np.random.beta(alpha, alpha) input = input.mul(lam).add_(1 - lam, input.flip(0)) target = mixup_target(target, num_classes, lam, smoothing) return input, target def rand_bbox(size, ratio): H, W = size[-2:] ratio = max(min(ratio, 0.8), 0.2) cut_h, cut_w = int(H * ratio), int(W * ratio) cy, cx = np.random.randint(H), np.random.randint(W) yl, yh = np.clip(cy - cut_h // 2, 0, H), np.clip(cy + cut_h // 2, 0, H) xl, xh = np.clip(cx - cut_w // 2, 0, W), np.clip(cx + cut_w // 2, 0, W) return yl, yh, xl, xh def cutmix_batch(input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disable=False): lam = 1. if not disable: lam = np.random.beta(alpha, alpha) if lam != 1: ratio = math.sqrt(1. - lam) yl, yh, xl, xh = rand_bbox(input.size(), ratio) input[:, :, yl:yh, xl:xh] = input.flip(0)[:, :, yl:yh, xl:xh] target = mixup_target(target, num_classes, lam, smoothing) return input, target def _resolve_mode(mode): mode = MixupMode.from_str(mode) if isinstance(mode, str) else mode if mode == MixupMode.RANDOM: mode = MixupMode(np.random.rand() > 0.5) return mode # will be one of cutmix or mixup def mix_batch( input, target, alpha=0.2, num_classes=1000, smoothing=0.1, disable=False, mode=MixupMode.MIXUP): mode = _resolve_mode(mode) if mode == MixupMode.CUTMIX: return mixup_batch(input, target, alpha, num_classes, smoothing, disable) else: return cutmix_batch(input, target, alpha, num_classes, smoothing, disable) class FastCollateMixup: """Fast Collate Mixup that applies different params to each element + flipped pair NOTE once experiments are done, one of the three variants will remain with this class name """ def __init__(self, mixup_alpha=1., label_smoothing=0.1, num_classes=1000, mode=MixupMode.MIXUP): self.mixup_alpha = mixup_alpha self.label_smoothing = label_smoothing self.num_classes = num_classes self.mode = MixupMode.from_str(mode) if isinstance(mode, str) else mode self.mixup_enabled = True self.correct_lam = False # correct lambda based on clipped area for cutmix def _do_mix(self, tensor, batch): batch_size = len(batch) lam_out = torch.ones(batch_size) for i in range(batch_size//2): j = batch_size - i - 1 lam = 1. if self.mixup_enabled: lam = np.random.beta(self.mixup_alpha, self.mixup_alpha) if _resolve_mode(self.mode) == MixupMode.CUTMIX: mixed_i, mixed_j = batch[i][0].astype(np.float32), batch[j][0].astype(np.float32) ratio = math.sqrt(1. - lam) if lam != 1: yl, yh, xl, xh = rand_bbox(tensor.size(), ratio) mixed_i[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh].astype(np.float32) mixed_j[:, yl:yh, xl:xh] = batch[i][0][:, yl:yh, xl:xh].astype(np.float32) if self.correct_lam: lam_corrected = (yh - yl) * (xh - xl) / (tensor.shape[-2] * tensor.shape[-1]) lam_out[i] -= lam_corrected lam_out[j] -= lam_corrected else: lam_out[i] = lam lam_out[j] = lam else: mixed_i = batch[i][0].astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam) mixed_j = batch[j][0].astype(np.float32) * lam + batch[i][0].astype(np.float32) * (1 - lam) lam_out[i] = lam lam_out[j] = lam np.round(mixed_i, out=mixed_i) np.round(mixed_j, out=mixed_j) tensor[i] += torch.from_numpy(mixed_i.astype(np.uint8)) tensor[j] += torch.from_numpy(mixed_j.astype(np.uint8)) return lam_out def __call__(self, batch): batch_size = len(batch) assert batch_size % 2 == 0, 'Batch size should be even when using this' tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) lam = self._do_mix(tensor, batch) target = torch.tensor([b[1] for b in batch], dtype=torch.int64) target = mixup_target(target, self.num_classes, lam.unsqueeze(1), self.label_smoothing, device='cpu') return tensor, target class FastCollateMixupElementwise(FastCollateMixup): """Fast Collate Mixup that applies different params to each batch element NOTE this is for experimentation, may remove at some point """ def __init__(self, mixup_alpha=1., label_smoothing=0.1, num_classes=1000, mode=MixupMode.MIXUP): super(FastCollateMixupElementwise, self).__init__(mixup_alpha, label_smoothing, num_classes, mode) def _do_mix(self, tensor, batch): batch_size = len(batch) lam_out = torch.ones(batch_size) for i in range(batch_size): lam = 1. if self.mixup_enabled: lam = np.random.beta(self.mixup_alpha, self.mixup_alpha) if _resolve_mode(self.mode) == MixupMode.CUTMIX: mixed = batch[i][0].astype(np.float32) ratio = math.sqrt(1. - lam) if lam != 1: yl, yh, xl, xh = rand_bbox(tensor.size(), ratio) mixed[:, yl:yh, xl:xh] = batch[batch_size - i - 1][0][:, yl:yh, xl:xh].astype(np.float32) if self.correct_lam: lam_out[i] -= (yh - yl) * (xh - xl) / (tensor.shape[-2] * tensor.shape[-1]) else: lam_out[i] = lam else: mixed = batch[i][0].astype(np.float32) * lam + \ batch[batch_size - i - 1][0].astype(np.float32) * (1 - lam) lam_out[i] = lam np.round(mixed, out=mixed) tensor[i] += torch.from_numpy(mixed.astype(np.uint8)) return lam_out class FastCollateMixupBatchwise(FastCollateMixup): """Fast Collate Mixup that applies same params to whole batch NOTE this is for experimentation, may remove at some point """ def __init__(self, mixup_alpha=1., label_smoothing=0.1, num_classes=1000, mode=MixupMode.MIXUP): super(FastCollateMixupBatchwise, self).__init__(mixup_alpha, label_smoothing, num_classes, mode) def _do_mix(self, tensor, batch): batch_size = len(batch) lam_out = torch.ones(batch_size) lam = 1. cutmix = _resolve_mode(self.mode) == MixupMode.CUTMIX if self.mixup_enabled: lam = np.random.beta(self.mixup_alpha, self.mixup_alpha) if cutmix and self.correct_lam: ratio = math.sqrt(1. - lam) yl, yh, xl, xh = rand_bbox(batch[0][0].shape, ratio) lam = 1 - (yh - yl) * (xh - xl) / (tensor.shape[-2] * tensor.shape[-1]) for i in range(batch_size): if cutmix: mixed = batch[i][0].astype(np.float32) if lam != 1: mixed[:, yl:yh, xl:xh] = batch[batch_size - i - 1][0][:, yl:yh, xl:xh].astype(np.float32) lam_out[i] -= (yh - yl) * (xh - xl) / (tensor.shape[-2] * tensor.shape[-1]) else: mixed = batch[i][0].astype(np.float32) * lam + \ batch[batch_size - i - 1][0].astype(np.float32) * (1 - lam) np.round(mixed, out=mixed) tensor[i] += torch.from_numpy(mixed.astype(np.uint8)) return lam