""" Image to Patch Embedding using Conv2d A convolution based approach to patchifying a 2D image w/ embedding projection. Based on the impl in https://github.com/google-research/vision_transformer Hacked together by / Copyright 2020 Ross Wightman """ from torch import nn as nn from .helpers import to_2tuple class PatchEmbed(nn.Module): """ 2D Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.out_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.out_size[0] * self.out_size[1] self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): B, C, H, W = x.shape assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) x = self.norm(x) return x