""" CBAM (sort-of) Attention Experimental impl of CBAM: Convolutional Block Attention Module: https://arxiv.org/abs/1807.06521 WARNING: Results with these attention layers have been mixed. They can significantly reduce performance on some tasks, especially fine-grained it seems. I may end up removing this impl. Hacked together by Ross Wightman """ import torch from torch import nn as nn from .conv_bn_act import ConvBnAct class ChannelAttn(nn.Module): """ Original CBAM channel attention module, currently avg + max pool variant only. """ def __init__(self, channels, reduction=16, act_layer=nn.ReLU): super(ChannelAttn, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(channels, channels // reduction, 1, bias=False) self.act = act_layer(inplace=True) self.fc2 = nn.Conv2d(channels // reduction, channels, 1, bias=False) def forward(self, x): x_avg = self.avg_pool(x) x_max = self.max_pool(x) x_avg = self.fc2(self.act(self.fc1(x_avg))) x_max = self.fc2(self.act(self.fc1(x_max))) x_attn = x_avg + x_max return x * x_attn.sigmoid() class LightChannelAttn(ChannelAttn): """An experimental 'lightweight' that sums avg + max pool first """ def __init__(self, channels, reduction=16): super(LightChannelAttn, self).__init__(channels, reduction) def forward(self, x): x_pool = 0.5 * self.avg_pool(x) + 0.5 * self.max_pool(x) x_attn = self.fc2(self.act(self.fc1(x_pool))) return x * x_attn.sigmoid() class SpatialAttn(nn.Module): """ Original CBAM spatial attention module """ def __init__(self, kernel_size=7): super(SpatialAttn, self).__init__() self.conv = ConvBnAct(2, 1, kernel_size, act_layer=None) def forward(self, x): x_avg = torch.mean(x, dim=1, keepdim=True) x_max = torch.max(x, dim=1, keepdim=True)[0] x_attn = torch.cat([x_avg, x_max], dim=1) x_attn = self.conv(x_attn) return x * x_attn.sigmoid() class LightSpatialAttn(nn.Module): """An experimental 'lightweight' variant that sums avg_pool and max_pool results. """ def __init__(self, kernel_size=7): super(LightSpatialAttn, self).__init__() self.conv = ConvBnAct(1, 1, kernel_size, act_layer=None) def forward(self, x): x_avg = torch.mean(x, dim=1, keepdim=True) x_max = torch.max(x, dim=1, keepdim=True)[0] x_attn = 0.5 * x_avg + 0.5 * x_max x_attn = self.conv(x_attn) return x * x_attn.sigmoid() class ConvBlockAttn(nn.Module): def __init__(self, channels, spatial_kernel_size=7): super(ConvBlockAttn, self).__init__() self.channel = ChannelAttn(channels) self.spatial = SpatialAttn(spatial_kernel_size) def forward(self, x): x = self.channel(x) x = self.spatial(x) return x class LightConvBlockAttn(nn.Module): def __init__(self, channels, spatial_kernel_size=7): super(LightConvBlockAttn, self).__init__() self.channel = LightChannelAttn(channels) self.spatial = LightSpatialAttn(spatial_kernel_size) def forward(self, x): x = self.channel(x) x = self.spatial(x) return x