import torch.cuda from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .mixup import FastCollateMixup from .random_erasing import RandomErasing class PrefetcherCuda: def __init__( self, loader, device: torch.device = torch.device('cuda'), dtype=torch.float32, normalize=True, normalize_shape=(1, 3, 1, 1), mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, re_prob=0., re_mode='const', re_count=1, num_aug_splits=0, ): self.loader = loader self.device = device self.dtype = dtype if normalize: self.mean = torch.tensor( [x * 255 for x in mean], dtype=self.dtype, device=self.device).view(normalize_shape) self.std = torch.tensor( [x * 255 for x in std], dtype=self.dtype, device=self.device).view(normalize_shape) else: self.mean = None self.std = None if re_prob > 0.: self.random_erasing = RandomErasing( probability=re_prob, mode=re_mode, count=re_count, num_splits=num_aug_splits) else: self.random_erasing = None def __iter__(self): stream = torch.cuda.Stream() first = True for next_input, next_target in self.loader: with torch.cuda.stream(stream): next_input = next_input.to(device=self.device, non_blocking=True) next_input = next_input.to(dtype=self.dtype) if self.mean is not None: next_input.sub_(self.mean).div_(self.std) next_target = next_target.to(device=self.device, non_blocking=True) if self.random_erasing is not None: next_input = self.random_erasing(next_input) if not first: yield input, target else: first = False torch.cuda.current_stream().wait_stream(stream) input = next_input target = next_target yield input, target def __len__(self): return len(self.loader) @property def sampler(self): return self.loader.sampler @property def dataset(self): return self.loader.dataset @property def mixup_enabled(self): if isinstance(self.loader.collate_fn, FastCollateMixup): return self.loader.collate_fn.mixup_enabled else: return False @mixup_enabled.setter def mixup_enabled(self, x): if isinstance(self.loader.collate_fn, FastCollateMixup): self.loader.collate_fn.mixup_enabled = x