import numpy as np import torch def fast_collate(batch): """ A fast collation function optimized for uint8 images (np array or torch) and int64 targets (labels)""" assert isinstance(batch[0], tuple) batch_size = len(batch) if isinstance(batch[0][0], tuple): # This branch 'deinterleaves' and flattens tuples of input tensors into one tensor ordered by position # such that all tuple of position n will end up in a torch.split(tensor, batch_size) in nth position inner_tuple_size = len(batch[0][0]) flattened_batch_size = batch_size * inner_tuple_size targets = torch.zeros(flattened_batch_size, dtype=torch.int64) tensor = torch.zeros((flattened_batch_size, *batch[0][0][0].shape), dtype=torch.uint8) for i in range(batch_size): assert len(batch[i][0]) == inner_tuple_size # all input tensor tuples must be same length for j in range(inner_tuple_size): targets[i + j * batch_size] = batch[i][1] tensor[i + j * batch_size] += torch.from_numpy(batch[i][0][j]) return tensor, targets elif isinstance(batch[0][0], np.ndarray): targets = torch.tensor([b[1] for b in batch], dtype=torch.int64) assert len(targets) == batch_size tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) for i in range(batch_size): tensor[i] += torch.from_numpy(batch[i][0]) return tensor, targets elif isinstance(batch[0][0], torch.Tensor): targets = torch.tensor([b[1] for b in batch], dtype=torch.int64) assert len(targets) == batch_size tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) for i in range(batch_size): tensor[i].copy_(batch[i][0]) return tensor, targets else: assert False