""" PyTorch EfficientNet Family An implementation of EfficienNet that covers variety of related models with efficient architectures: * EfficientNet (B0-B8, L2 + Tensorflow pretrained AutoAug/RandAug/AdvProp/NoisyStudent weight ports) - EfficientNet: Rethinking Model Scaling for CNNs - https://arxiv.org/abs/1905.11946 - CondConv: Conditionally Parameterized Convolutions for Efficient Inference - https://arxiv.org/abs/1904.04971 - Adversarial Examples Improve Image Recognition - https://arxiv.org/abs/1911.09665 - Self-training with Noisy Student improves ImageNet classification - https://arxiv.org/abs/1911.04252 * MixNet (Small, Medium, and Large) - MixConv: Mixed Depthwise Convolutional Kernels - https://arxiv.org/abs/1907.09595 * MNasNet B1, A1 (SE), Small - MnasNet: Platform-Aware Neural Architecture Search for Mobile - https://arxiv.org/abs/1807.11626 * FBNet-C - FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable NAS - https://arxiv.org/abs/1812.03443 * Single-Path NAS Pixel1 - Single-Path NAS: Designing Hardware-Efficient ConvNets - https://arxiv.org/abs/1904.02877 * And likely more... Hacked together by Ross Wightman """ import torch import torch.nn as nn import torch.nn.functional as F from typing import List from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from .efficientnet_blocks import round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT from .efficientnet_builder import EfficientNetBuilder, decode_arch_def, efficientnet_init_weights from .feature_hooks import FeatureHooks from .features import FeatureInfo from .helpers import load_pretrained, adapt_model_from_file from .layers import SelectAdaptivePool2d, create_conv2d from .registry import register_model __all__ = ['EfficientNet'] def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } default_cfgs = { 'mnasnet_050': _cfg(url=''), 'mnasnet_075': _cfg(url=''), 'mnasnet_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_b1-74cb7081.pth'), 'mnasnet_140': _cfg(url=''), 'semnasnet_050': _cfg(url=''), 'semnasnet_075': _cfg(url=''), 'semnasnet_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_a1-d9418771.pth'), 'semnasnet_140': _cfg(url=''), 'mnasnet_small': _cfg(url=''), 'mobilenetv2_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_100_ra-b33bc2c4.pth'), 'mobilenetv2_110d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_110d_ra-77090ade.pth'), 'mobilenetv2_120d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_120d_ra-5987e2ed.pth'), 'mobilenetv2_140': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_140_ra-21a4e913.pth'), 'fbnetc_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetc_100-c345b898.pth', interpolation='bilinear'), 'spnasnet_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/spnasnet_100-048bc3f4.pth', interpolation='bilinear'), 'efficientnet_b0': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth'), 'efficientnet_b1': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth', input_size=(3, 240, 240), pool_size=(8, 8)), 'efficientnet_b2': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth', input_size=(3, 260, 260), pool_size=(9, 9)), 'efficientnet_b2a': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth', input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0), 'efficientnet_b3': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra-a5e2fbc7.pth', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'efficientnet_b3a': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra-a5e2fbc7.pth', input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0), 'efficientnet_b4': _cfg( url='', input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'efficientnet_b5': _cfg( url='', input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), 'efficientnet_b6': _cfg( url='', input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), 'efficientnet_b7': _cfg( url='', input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), 'efficientnet_b8': _cfg( url='', input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), 'efficientnet_l2': _cfg( url='', input_size=(3, 800, 800), pool_size=(25, 25), crop_pct=0.961), 'efficientnet_es': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth'), 'efficientnet_em': _cfg( url='', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'efficientnet_el': _cfg( url='', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'efficientnet_cc_b0_4e': _cfg(url=''), 'efficientnet_cc_b0_8e': _cfg(url=''), 'efficientnet_cc_b1_8e': _cfg(url='', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'efficientnet_lite0': _cfg( url=''), 'efficientnet_lite1': _cfg( url='', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'efficientnet_lite2': _cfg( url='', input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), 'efficientnet_lite3': _cfg( url='', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'efficientnet_lite4': _cfg( url='', input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'efficientnet_b1_pruned': _cfg( url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb1_pruned_9ebb3fe6.pth', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'efficientnet_b2_pruned': _cfg( url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb2_pruned_203f55bc.pth', input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'efficientnet_b3_pruned': _cfg( url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb3_pruned_5abcc29f.pth', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_efficientnet_b0': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth', input_size=(3, 224, 224)), 'tf_efficientnet_b1': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_aa-ea7a6ee0.pth', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_b2': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_aa-60c94f97.pth', input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), 'tf_efficientnet_b3': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_aa-84b4657e.pth', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'tf_efficientnet_b4': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_aa-818f208c.pth', input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'tf_efficientnet_b5': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ra-9a3e5369.pth', input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), 'tf_efficientnet_b6': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_aa-80ba17e4.pth', input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), 'tf_efficientnet_b7': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ra-6c08e654.pth', input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), 'tf_efficientnet_b8': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ra-572d5dd9.pth', input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), 'tf_efficientnet_b0_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 224, 224)), 'tf_efficientnet_b1_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ap-44ef0a3d.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_b2_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ap-2f8e7636.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), 'tf_efficientnet_b3_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ap-aad25bdd.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'tf_efficientnet_b4_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ap-dedb23e6.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'tf_efficientnet_b5_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ap-9e82fae8.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), 'tf_efficientnet_b6_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ap-4ffb161f.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), 'tf_efficientnet_b7_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ap-ddb28fec.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), 'tf_efficientnet_b8_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ap-00e169fa.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), 'tf_efficientnet_b0_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ns-c0e6a31c.pth', input_size=(3, 224, 224)), 'tf_efficientnet_b1_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ns-99dd0c41.pth', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_b2_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ns-00306e48.pth', input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), 'tf_efficientnet_b3_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ns-9d44bf68.pth', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'tf_efficientnet_b4_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ns-d6313a46.pth', input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'tf_efficientnet_b5_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ns-6f26d0cf.pth', input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), 'tf_efficientnet_b6_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ns-51548356.pth', input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), 'tf_efficientnet_b7_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ns-1dbc32de.pth', input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), 'tf_efficientnet_l2_ns_475': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns_475-bebbd00a.pth', input_size=(3, 475, 475), pool_size=(15, 15), crop_pct=0.936), 'tf_efficientnet_l2_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns-df73bb44.pth', input_size=(3, 800, 800), pool_size=(25, 25), crop_pct=0.96), 'tf_efficientnet_es': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_es-ca1afbfe.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 224, 224), ), 'tf_efficientnet_em': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_em-e78cfe58.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_el': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_el-5143854e.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'tf_efficientnet_cc_b0_4e': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_4e-4362b6b2.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_efficientnet_cc_b0_8e': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_8e-66184a25.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_efficientnet_cc_b1_8e': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b1_8e-f7c79ae1.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_lite0': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite0-0aa007d2.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), interpolation='bicubic', # should be bilinear but bicubic better match for TF bilinear at low res ), 'tf_efficientnet_lite1': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite1-bde8b488.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882, interpolation='bicubic', # should be bilinear but bicubic better match for TF bilinear at low res ), 'tf_efficientnet_lite2': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite2-dcccb7df.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890, interpolation='bicubic', # should be bilinear but bicubic better match for TF bilinear at low res ), 'tf_efficientnet_lite3': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite3-b733e338.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904, interpolation='bilinear'), 'tf_efficientnet_lite4': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite4-741542c3.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.920, interpolation='bilinear'), 'mixnet_s': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_s-a907afbc.pth'), 'mixnet_m': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_m-4647fc68.pth'), 'mixnet_l': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_l-5a9a2ed8.pth'), 'mixnet_xl': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_xl_ra-aac3c00c.pth'), 'mixnet_xxl': _cfg(), 'tf_mixnet_s': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_s-89d3354b.pth'), 'tf_mixnet_m': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_m-0f4d8805.pth'), 'tf_mixnet_l': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_l-6c92e0c8.pth'), } _DEBUG = False class EfficientNet(nn.Module): """ (Generic) EfficientNet A flexible and performant PyTorch implementation of efficient network architectures, including: * EfficientNet B0-B8, L2 * EfficientNet-EdgeTPU * EfficientNet-CondConv * MixNet S, M, L, XL * MnasNet A1, B1, and small * FBNet C * Single-Path NAS Pixel1 """ def __init__(self, block_args, num_classes=1000, num_features=1280, in_chans=3, stem_size=32, channel_multiplier=1.0, channel_divisor=8, channel_min=None, output_stride=32, pad_type='', fix_stem=False, act_layer=nn.ReLU, drop_rate=0., drop_path_rate=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, global_pool='avg'): super(EfficientNet, self).__init__() norm_kwargs = norm_kwargs or {} self.num_classes = num_classes self.num_features = num_features self.drop_rate = drop_rate self._in_chs = in_chans # Stem if not fix_stem: stem_size = round_channels(stem_size, channel_multiplier, channel_divisor, channel_min) self.conv_stem = create_conv2d(self._in_chs, stem_size, 3, stride=2, padding=pad_type) self.bn1 = norm_layer(stem_size, **norm_kwargs) self.act1 = act_layer(inplace=True) self._in_chs = stem_size # Middle stages (IR/ER/DS Blocks) builder = EfficientNetBuilder( channel_multiplier, channel_divisor, channel_min, output_stride, pad_type, act_layer, se_kwargs, norm_layer, norm_kwargs, drop_path_rate, verbose=_DEBUG) self.blocks = nn.Sequential(*builder(self._in_chs, block_args)) self.feature_info = builder.features self._in_chs = builder.in_chs # Head + Pooling self.conv_head = create_conv2d(self._in_chs, self.num_features, 1, padding=pad_type) self.bn2 = norm_layer(self.num_features, **norm_kwargs) self.act2 = act_layer(inplace=True) self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) # Classifier self.classifier = nn.Linear(self.num_features * self.global_pool.feat_mult(), self.num_classes) efficientnet_init_weights(self) def as_sequential(self): layers = [self.conv_stem, self.bn1, self.act1] layers.extend(self.blocks) layers.extend([self.conv_head, self.bn2, self.act2, self.global_pool]) layers.extend([nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier]) return nn.Sequential(*layers) def get_classifier(self): return self.classifier def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) if num_classes: num_features = self.num_features * self.global_pool.feat_mult() self.classifier = nn.Linear(num_features, num_classes) else: self.classifier = nn.Identity() def forward_features(self, x): x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) x = self.blocks(x) x = self.conv_head(x) x = self.bn2(x) x = self.act2(x) return x def forward(self, x): x = self.forward_features(x) x = self.global_pool(x) x = x.flatten(1) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) return self.classifier(x) class EfficientNetFeatures(nn.Module): """ EfficientNet Feature Extractor A work-in-progress feature extraction module for EfficientNet, to use as a backbone for segmentation and object detection models. """ def __init__(self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='bottleneck', in_chans=3, stem_size=32, channel_multiplier=1.0, channel_divisor=8, channel_min=None, output_stride=32, pad_type='', fix_stem=False, act_layer=nn.ReLU, drop_rate=0., drop_path_rate=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None): super(EfficientNetFeatures, self).__init__() norm_kwargs = norm_kwargs or {} # TODO only create stages needed, currently all stages are created regardless of out_indices num_stages = max(out_indices) + 1 self.out_indices = out_indices self.feature_location = feature_location self.drop_rate = drop_rate self._in_chs = in_chans # Stem if not fix_stem: stem_size = round_channels(stem_size, channel_multiplier, channel_divisor, channel_min) self.conv_stem = create_conv2d(self._in_chs, stem_size, 3, stride=2, padding=pad_type) self.bn1 = norm_layer(stem_size, **norm_kwargs) self.act1 = act_layer(inplace=True) self._in_chs = stem_size # Middle stages (IR/ER/DS Blocks) builder = EfficientNetBuilder( channel_multiplier, channel_divisor, channel_min, output_stride, pad_type, act_layer, se_kwargs, norm_layer, norm_kwargs, drop_path_rate, feature_location=feature_location, verbose=_DEBUG) self.blocks = nn.Sequential(*builder(self._in_chs, block_args)) self.feature_info = FeatureInfo(builder.features, out_indices) self._stage_to_feature_idx = { v['stage_idx']: fi for fi, v in enumerate(self.feature_info) if fi in self.out_indices} self._in_chs = builder.in_chs efficientnet_init_weights(self) if _DEBUG: for fi, v in enumerate(self.feature_info): print('Feature idx: {}: Name: {}, Channels: {}'.format(fi, v['module'], v['num_chs'])) # Register feature extraction hooks with FeatureHooks helper self.feature_hooks = None if feature_location != 'bottleneck': hooks = self.feature_info.get_by_key(keys=('module', 'hook_type')) self.feature_hooks = FeatureHooks(hooks, self.named_modules()) def forward(self, x) -> List[torch.Tensor]: x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) if self.feature_hooks is None: features = [] for i, b in enumerate(self.blocks): x = b(x) if i in self._stage_to_feature_idx: features.append(x) return features else: self.blocks(x) return self.feature_hooks.get_output(x.device) def _create_model(model_kwargs, default_cfg, pretrained=False): if model_kwargs.pop('features_only', False): load_strict = False model_kwargs.pop('num_classes', 0) model_kwargs.pop('num_features', 0) model_kwargs.pop('head_conv', None) model_class = EfficientNetFeatures else: load_strict = True model_class = EfficientNet variant = model_kwargs.pop('variant', '') model = model_class(**model_kwargs) model.default_cfg = default_cfg if '_pruned' in variant: model = adapt_model_from_file(model, variant) if pretrained: load_pretrained( model, default_cfg, num_classes=model_kwargs.get('num_classes', 0), in_chans=model_kwargs.get('in_chans', 3), strict=load_strict) return model def _gen_mnasnet_a1(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """Creates a mnasnet-a1 model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet Paper: https://arxiv.org/pdf/1807.11626.pdf. Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c16_noskip'], # stage 1, 112x112 in ['ir_r2_k3_s2_e6_c24'], # stage 2, 56x56 in ['ir_r3_k5_s2_e3_c40_se0.25'], # stage 3, 28x28 in ['ir_r4_k3_s2_e6_c80'], # stage 4, 14x14in ['ir_r2_k3_s1_e6_c112_se0.25'], # stage 5, 14x14in ['ir_r3_k5_s2_e6_c160_se0.25'], # stage 6, 7x7 in ['ir_r1_k3_s1_e6_c320'], ] model_kwargs = dict( block_args=decode_arch_def(arch_def), stem_size=32, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_mnasnet_b1(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """Creates a mnasnet-b1 model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet Paper: https://arxiv.org/pdf/1807.11626.pdf. Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_c16_noskip'], # stage 1, 112x112 in ['ir_r3_k3_s2_e3_c24'], # stage 2, 56x56 in ['ir_r3_k5_s2_e3_c40'], # stage 3, 28x28 in ['ir_r3_k5_s2_e6_c80'], # stage 4, 14x14in ['ir_r2_k3_s1_e6_c96'], # stage 5, 14x14in ['ir_r4_k5_s2_e6_c192'], # stage 6, 7x7 in ['ir_r1_k3_s1_e6_c320_noskip'] ] model_kwargs = dict( block_args=decode_arch_def(arch_def), stem_size=32, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_mnasnet_small(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """Creates a mnasnet-b1 model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet Paper: https://arxiv.org/pdf/1807.11626.pdf. Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ ['ds_r1_k3_s1_c8'], ['ir_r1_k3_s2_e3_c16'], ['ir_r2_k3_s2_e6_c16'], ['ir_r4_k5_s2_e6_c32_se0.25'], ['ir_r3_k3_s1_e6_c32_se0.25'], ['ir_r3_k5_s2_e6_c88_se0.25'], ['ir_r1_k3_s1_e6_c144'] ] model_kwargs = dict( block_args=decode_arch_def(arch_def), stem_size=8, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_mobilenet_v2( variant, channel_multiplier=1.0, depth_multiplier=1.0, fix_stem_head=False, pretrained=False, **kwargs): """ Generate MobileNet-V2 network Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py Paper: https://arxiv.org/abs/1801.04381 """ arch_def = [ ['ds_r1_k3_s1_c16'], ['ir_r2_k3_s2_e6_c24'], ['ir_r3_k3_s2_e6_c32'], ['ir_r4_k3_s2_e6_c64'], ['ir_r3_k3_s1_e6_c96'], ['ir_r3_k3_s2_e6_c160'], ['ir_r1_k3_s1_e6_c320'], ] model_kwargs = dict( block_args=decode_arch_def(arch_def, depth_multiplier=depth_multiplier, fix_first_last=fix_stem_head), num_features=1280 if fix_stem_head else round_channels(1280, channel_multiplier, 8, None), stem_size=32, fix_stem=fix_stem_head, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), act_layer=resolve_act_layer(kwargs, 'relu6'), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_fbnetc(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """ FBNet-C Paper: https://arxiv.org/abs/1812.03443 Ref Impl: https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_modeldef.py NOTE: the impl above does not relate to the 'C' variant here, that was derived from paper, it was used to confirm some building block details """ arch_def = [ ['ir_r1_k3_s1_e1_c16'], ['ir_r1_k3_s2_e6_c24', 'ir_r2_k3_s1_e1_c24'], ['ir_r1_k5_s2_e6_c32', 'ir_r1_k5_s1_e3_c32', 'ir_r1_k5_s1_e6_c32', 'ir_r1_k3_s1_e6_c32'], ['ir_r1_k5_s2_e6_c64', 'ir_r1_k5_s1_e3_c64', 'ir_r2_k5_s1_e6_c64'], ['ir_r3_k5_s1_e6_c112', 'ir_r1_k5_s1_e3_c112'], ['ir_r4_k5_s2_e6_c184'], ['ir_r1_k3_s1_e6_c352'], ] model_kwargs = dict( block_args=decode_arch_def(arch_def), stem_size=16, num_features=1984, # paper suggests this, but is not 100% clear channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_spnasnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """Creates the Single-Path NAS model from search targeted for Pixel1 phone. Paper: https://arxiv.org/abs/1904.02877 Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_c16_noskip'], # stage 1, 112x112 in ['ir_r3_k3_s2_e3_c24'], # stage 2, 56x56 in ['ir_r1_k5_s2_e6_c40', 'ir_r3_k3_s1_e3_c40'], # stage 3, 28x28 in ['ir_r1_k5_s2_e6_c80', 'ir_r3_k3_s1_e3_c80'], # stage 4, 14x14in ['ir_r1_k5_s1_e6_c96', 'ir_r3_k5_s1_e3_c96'], # stage 5, 14x14in ['ir_r4_k5_s2_e6_c192'], # stage 6, 7x7 in ['ir_r1_k3_s1_e6_c320_noskip'] ] model_kwargs = dict( block_args=decode_arch_def(arch_def), stem_size=32, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_efficientnet(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): """Creates an EfficientNet model. Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py Paper: https://arxiv.org/abs/1905.11946 EfficientNet params name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) 'efficientnet-b0': (1.0, 1.0, 224, 0.2), 'efficientnet-b1': (1.0, 1.1, 240, 0.2), 'efficientnet-b2': (1.1, 1.2, 260, 0.3), 'efficientnet-b3': (1.2, 1.4, 300, 0.3), 'efficientnet-b4': (1.4, 1.8, 380, 0.4), 'efficientnet-b5': (1.6, 2.2, 456, 0.4), 'efficientnet-b6': (1.8, 2.6, 528, 0.5), 'efficientnet-b7': (2.0, 3.1, 600, 0.5), 'efficientnet-b8': (2.2, 3.6, 672, 0.5), 'efficientnet-l2': (4.3, 5.3, 800, 0.5), Args: channel_multiplier: multiplier to number of channels per layer depth_multiplier: multiplier to number of repeats per stage """ arch_def = [ ['ds_r1_k3_s1_e1_c16_se0.25'], ['ir_r2_k3_s2_e6_c24_se0.25'], ['ir_r2_k5_s2_e6_c40_se0.25'], ['ir_r3_k3_s2_e6_c80_se0.25'], ['ir_r3_k5_s1_e6_c112_se0.25'], ['ir_r4_k5_s2_e6_c192_se0.25'], ['ir_r1_k3_s1_e6_c320_se0.25'], ] model_kwargs = dict( block_args=decode_arch_def(arch_def, depth_multiplier), num_features=round_channels(1280, channel_multiplier, 8, None), stem_size=32, channel_multiplier=channel_multiplier, act_layer=resolve_act_layer(kwargs, 'swish'), norm_kwargs=resolve_bn_args(kwargs), variant=variant, **kwargs, ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_efficientnet_edge(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): """ Creates an EfficientNet-EdgeTPU model Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/edgetpu """ arch_def = [ # NOTE `fc` is present to override a mismatch between stem channels and in chs not # present in other models ['er_r1_k3_s1_e4_c24_fc24_noskip'], ['er_r2_k3_s2_e8_c32'], ['er_r4_k3_s2_e8_c48'], ['ir_r5_k5_s2_e8_c96'], ['ir_r4_k5_s1_e8_c144'], ['ir_r2_k5_s2_e8_c192'], ] model_kwargs = dict( block_args=decode_arch_def(arch_def, depth_multiplier), num_features=round_channels(1280, channel_multiplier, 8, None), stem_size=32, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), act_layer=resolve_act_layer(kwargs, 'relu'), **kwargs, ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_efficientnet_condconv( variant, channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=1, pretrained=False, **kwargs): """Creates an EfficientNet-CondConv model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv """ arch_def = [ ['ds_r1_k3_s1_e1_c16_se0.25'], ['ir_r2_k3_s2_e6_c24_se0.25'], ['ir_r2_k5_s2_e6_c40_se0.25'], ['ir_r3_k3_s2_e6_c80_se0.25'], ['ir_r3_k5_s1_e6_c112_se0.25_cc4'], ['ir_r4_k5_s2_e6_c192_se0.25_cc4'], ['ir_r1_k3_s1_e6_c320_se0.25_cc4'], ] # NOTE unlike official impl, this one uses `cc` option where x is the base number of experts for each stage and # the expert_multiplier increases that on a per-model basis as with depth/channel multipliers model_kwargs = dict( block_args=decode_arch_def(arch_def, depth_multiplier, experts_multiplier=experts_multiplier), num_features=round_channels(1280, channel_multiplier, 8, None), stem_size=32, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), act_layer=resolve_act_layer(kwargs, 'swish'), **kwargs, ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_efficientnet_lite(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): """Creates an EfficientNet-Lite model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite Paper: https://arxiv.org/abs/1905.11946 EfficientNet params name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) 'efficientnet-lite0': (1.0, 1.0, 224, 0.2), 'efficientnet-lite1': (1.0, 1.1, 240, 0.2), 'efficientnet-lite2': (1.1, 1.2, 260, 0.3), 'efficientnet-lite3': (1.2, 1.4, 280, 0.3), 'efficientnet-lite4': (1.4, 1.8, 300, 0.3), Args: channel_multiplier: multiplier to number of channels per layer depth_multiplier: multiplier to number of repeats per stage """ arch_def = [ ['ds_r1_k3_s1_e1_c16'], ['ir_r2_k3_s2_e6_c24'], ['ir_r2_k5_s2_e6_c40'], ['ir_r3_k3_s2_e6_c80'], ['ir_r3_k5_s1_e6_c112'], ['ir_r4_k5_s2_e6_c192'], ['ir_r1_k3_s1_e6_c320'], ] model_kwargs = dict( block_args=decode_arch_def(arch_def, depth_multiplier, fix_first_last=True), num_features=1280, stem_size=32, fix_stem=True, channel_multiplier=channel_multiplier, act_layer=resolve_act_layer(kwargs, 'relu6'), norm_kwargs=resolve_bn_args(kwargs), **kwargs, ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_mixnet_s(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """Creates a MixNet Small model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet Paper: https://arxiv.org/abs/1907.09595 """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c16'], # relu # stage 1, 112x112 in ['ir_r1_k3_a1.1_p1.1_s2_e6_c24', 'ir_r1_k3_a1.1_p1.1_s1_e3_c24'], # relu # stage 2, 56x56 in ['ir_r1_k3.5.7_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], # swish # stage 3, 28x28 in ['ir_r1_k3.5.7_p1.1_s2_e6_c80_se0.25_nsw', 'ir_r2_k3.5_p1.1_s1_e6_c80_se0.25_nsw'], # swish # stage 4, 14x14in ['ir_r1_k3.5.7_a1.1_p1.1_s1_e6_c120_se0.5_nsw', 'ir_r2_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], # swish # stage 5, 14x14in ['ir_r1_k3.5.7.9.11_s2_e6_c200_se0.5_nsw', 'ir_r2_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw'], # swish # 7x7 ] model_kwargs = dict( block_args=decode_arch_def(arch_def), num_features=1536, stem_size=16, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_mixnet_m(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): """Creates a MixNet Medium-Large model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet Paper: https://arxiv.org/abs/1907.09595 """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c24'], # relu # stage 1, 112x112 in ['ir_r1_k3.5.7_a1.1_p1.1_s2_e6_c32', 'ir_r1_k3_a1.1_p1.1_s1_e3_c32'], # relu # stage 2, 56x56 in ['ir_r1_k3.5.7.9_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], # swish # stage 3, 28x28 in ['ir_r1_k3.5.7_s2_e6_c80_se0.25_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e6_c80_se0.25_nsw'], # swish # stage 4, 14x14in ['ir_r1_k3_s1_e6_c120_se0.5_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], # swish # stage 5, 14x14in ['ir_r1_k3.5.7.9_s2_e6_c200_se0.5_nsw', 'ir_r3_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw'], # swish # 7x7 ] model_kwargs = dict( block_args=decode_arch_def(arch_def, depth_multiplier, depth_trunc='round'), num_features=1536, stem_size=24, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model @register_model def mnasnet_050(pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 0.5. """ model = _gen_mnasnet_b1('mnasnet_050', 0.5, pretrained=pretrained, **kwargs) return model @register_model def mnasnet_075(pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 0.75. """ model = _gen_mnasnet_b1('mnasnet_075', 0.75, pretrained=pretrained, **kwargs) return model @register_model def mnasnet_100(pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 1.0. """ model = _gen_mnasnet_b1('mnasnet_100', 1.0, pretrained=pretrained, **kwargs) return model @register_model def mnasnet_b1(pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 1.0. """ return mnasnet_100(pretrained, **kwargs) @register_model def mnasnet_140(pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 1.4 """ model = _gen_mnasnet_b1('mnasnet_140', 1.4, pretrained=pretrained, **kwargs) return model @register_model def semnasnet_050(pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 0.5 """ model = _gen_mnasnet_a1('semnasnet_050', 0.5, pretrained=pretrained, **kwargs) return model @register_model def semnasnet_075(pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 0.75. """ model = _gen_mnasnet_a1('semnasnet_075', 0.75, pretrained=pretrained, **kwargs) return model @register_model def semnasnet_100(pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 1.0. """ model = _gen_mnasnet_a1('semnasnet_100', 1.0, pretrained=pretrained, **kwargs) return model @register_model def mnasnet_a1(pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 1.0. """ return semnasnet_100(pretrained, **kwargs) @register_model def semnasnet_140(pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 1.4. """ model = _gen_mnasnet_a1('semnasnet_140', 1.4, pretrained=pretrained, **kwargs) return model @register_model def mnasnet_small(pretrained=False, **kwargs): """ MNASNet Small, depth multiplier of 1.0. """ model = _gen_mnasnet_small('mnasnet_small', 1.0, pretrained=pretrained, **kwargs) return model @register_model def mobilenetv2_100(pretrained=False, **kwargs): """ MobileNet V2 w/ 1.0 channel multiplier """ model = _gen_mobilenet_v2('mobilenetv2_100', 1.0, pretrained=pretrained, **kwargs) return model @register_model def mobilenetv2_140(pretrained=False, **kwargs): """ MobileNet V2 w/ 1.4 channel multiplier """ model = _gen_mobilenet_v2('mobilenetv2_140', 1.4, pretrained=pretrained, **kwargs) return model @register_model def mobilenetv2_110d(pretrained=False, **kwargs): """ MobileNet V2 w/ 1.1 channel, 1.2 depth multipliers""" model = _gen_mobilenet_v2( 'mobilenetv2_110d', 1.1, depth_multiplier=1.2, fix_stem_head=True, pretrained=pretrained, **kwargs) return model @register_model def mobilenetv2_120d(pretrained=False, **kwargs): """ MobileNet V2 w/ 1.2 channel, 1.4 depth multipliers """ model = _gen_mobilenet_v2( 'mobilenetv2_120d', 1.2, depth_multiplier=1.4, fix_stem_head=True, pretrained=pretrained, **kwargs) return model @register_model def fbnetc_100(pretrained=False, **kwargs): """ FBNet-C """ if pretrained: # pretrained model trained with non-default BN epsilon kwargs['bn_eps'] = BN_EPS_TF_DEFAULT model = _gen_fbnetc('fbnetc_100', 1.0, pretrained=pretrained, **kwargs) return model @register_model def spnasnet_100(pretrained=False, **kwargs): """ Single-Path NAS Pixel1""" model = _gen_spnasnet('spnasnet_100', 1.0, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b0(pretrained=False, **kwargs): """ EfficientNet-B0 """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b1(pretrained=False, **kwargs): """ EfficientNet-B1 """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b2(pretrained=False, **kwargs): """ EfficientNet-B2 """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b2a(pretrained=False, **kwargs): """ EfficientNet-B2 @ 288x288 w/ 1.0 test crop""" # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b2a', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b3(pretrained=False, **kwargs): """ EfficientNet-B3 """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b3a(pretrained=False, **kwargs): """ EfficientNet-B3 @ 320x320 w/ 1.0 test crop-pct """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b3a', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b4(pretrained=False, **kwargs): """ EfficientNet-B4 """ # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b5(pretrained=False, **kwargs): """ EfficientNet-B5 """ # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b6(pretrained=False, **kwargs): """ EfficientNet-B6 """ # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b7(pretrained=False, **kwargs): """ EfficientNet-B7 """ # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b8(pretrained=False, **kwargs): """ EfficientNet-B8 """ # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_l2(pretrained=False, **kwargs): """ EfficientNet-L2.""" # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_l2', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_es(pretrained=False, **kwargs): """ EfficientNet-Edge Small. """ model = _gen_efficientnet_edge( 'efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_em(pretrained=False, **kwargs): """ EfficientNet-Edge-Medium. """ model = _gen_efficientnet_edge( 'efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_el(pretrained=False, **kwargs): """ EfficientNet-Edge-Large. """ model = _gen_efficientnet_edge( 'efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_cc_b0_4e(pretrained=False, **kwargs): """ EfficientNet-CondConv-B0 w/ 8 Experts """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet_condconv( 'efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_cc_b0_8e(pretrained=False, **kwargs): """ EfficientNet-CondConv-B0 w/ 8 Experts """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet_condconv( 'efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_cc_b1_8e(pretrained=False, **kwargs): """ EfficientNet-CondConv-B1 w/ 8 Experts """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet_condconv( 'efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_lite0(pretrained=False, **kwargs): """ EfficientNet-Lite0 """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet_lite( 'efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_lite1(pretrained=False, **kwargs): """ EfficientNet-Lite1 """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet_lite( 'efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_lite2(pretrained=False, **kwargs): """ EfficientNet-Lite2 """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 model = _gen_efficientnet_lite( 'efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_lite3(pretrained=False, **kwargs): """ EfficientNet-Lite3 """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 model = _gen_efficientnet_lite( 'efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_lite4(pretrained=False, **kwargs): """ EfficientNet-Lite4 """ # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2 model = _gen_efficientnet_lite( 'efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b1_pruned(pretrained=False, **kwargs): """ EfficientNet-B1 Pruned. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' variant = 'efficientnet_b1_pruned' model = _gen_efficientnet( variant, channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b2_pruned(pretrained=False, **kwargs): """ EfficientNet-B2 Pruned. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'efficientnet_b2_pruned', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model @register_model def efficientnet_b3_pruned(pretrained=False, **kwargs): """ EfficientNet-B3 Pruned. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'efficientnet_b3_pruned', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b0(pretrained=False, **kwargs): """ EfficientNet-B0. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b1(pretrained=False, **kwargs): """ EfficientNet-B1. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b2(pretrained=False, **kwargs): """ EfficientNet-B2. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b3(pretrained=False, **kwargs): """ EfficientNet-B3. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b4(pretrained=False, **kwargs): """ EfficientNet-B4. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b5(pretrained=False, **kwargs): """ EfficientNet-B5. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b6(pretrained=False, **kwargs): """ EfficientNet-B6. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b7(pretrained=False, **kwargs): """ EfficientNet-B7. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b8(pretrained=False, **kwargs): """ EfficientNet-B8. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b0_ap(pretrained=False, **kwargs): """ EfficientNet-B0 AdvProp. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b0_ap', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b1_ap(pretrained=False, **kwargs): """ EfficientNet-B1 AdvProp. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b1_ap', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b2_ap(pretrained=False, **kwargs): """ EfficientNet-B2 AdvProp. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b2_ap', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b3_ap(pretrained=False, **kwargs): """ EfficientNet-B3 AdvProp. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b3_ap', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b4_ap(pretrained=False, **kwargs): """ EfficientNet-B4 AdvProp. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b4_ap', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b5_ap(pretrained=False, **kwargs): """ EfficientNet-B5 AdvProp. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b5_ap', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b6_ap(pretrained=False, **kwargs): """ EfficientNet-B6 AdvProp. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b6_ap', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b7_ap(pretrained=False, **kwargs): """ EfficientNet-B7 AdvProp. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b7_ap', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b8_ap(pretrained=False, **kwargs): """ EfficientNet-B8 AdvProp. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b8_ap', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b0_ns(pretrained=False, **kwargs): """ EfficientNet-B0 NoisyStudent. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b0_ns', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b1_ns(pretrained=False, **kwargs): """ EfficientNet-B1 NoisyStudent. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b1_ns', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b2_ns(pretrained=False, **kwargs): """ EfficientNet-B2 NoisyStudent. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b2_ns', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b3_ns(pretrained=False, **kwargs): """ EfficientNet-B3 NoisyStudent. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b3_ns', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b4_ns(pretrained=False, **kwargs): """ EfficientNet-B4 NoisyStudent. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b4_ns', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b5_ns(pretrained=False, **kwargs): """ EfficientNet-B5 NoisyStudent. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b5_ns', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b6_ns(pretrained=False, **kwargs): """ EfficientNet-B6 NoisyStudent. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b6_ns', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_b7_ns(pretrained=False, **kwargs): """ EfficientNet-B7 NoisyStudent. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b7_ns', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_l2_ns_475(pretrained=False, **kwargs): """ EfficientNet-L2 NoisyStudent @ 475x475. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_l2_ns_475', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_l2_ns(pretrained=False, **kwargs): """ EfficientNet-L2 NoisyStudent. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_l2_ns', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_es(pretrained=False, **kwargs): """ EfficientNet-Edge Small. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_edge( 'tf_efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_em(pretrained=False, **kwargs): """ EfficientNet-Edge-Medium. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_edge( 'tf_efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_el(pretrained=False, **kwargs): """ EfficientNet-Edge-Large. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_edge( 'tf_efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_cc_b0_4e(pretrained=False, **kwargs): """ EfficientNet-CondConv-B0 w/ 4 Experts. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_condconv( 'tf_efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_cc_b0_8e(pretrained=False, **kwargs): """ EfficientNet-CondConv-B0 w/ 8 Experts. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_condconv( 'tf_efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_cc_b1_8e(pretrained=False, **kwargs): """ EfficientNet-CondConv-B1 w/ 8 Experts. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_condconv( 'tf_efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_lite0(pretrained=False, **kwargs): """ EfficientNet-Lite0 """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_lite( 'tf_efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_lite1(pretrained=False, **kwargs): """ EfficientNet-Lite1 """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_lite( 'tf_efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_lite2(pretrained=False, **kwargs): """ EfficientNet-Lite2 """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_lite( 'tf_efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_lite3(pretrained=False, **kwargs): """ EfficientNet-Lite3 """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_lite( 'tf_efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model @register_model def tf_efficientnet_lite4(pretrained=False, **kwargs): """ EfficientNet-Lite4 """ # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_lite( 'tf_efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) return model @register_model def mixnet_s(pretrained=False, **kwargs): """Creates a MixNet Small model. """ model = _gen_mixnet_s( 'mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def mixnet_m(pretrained=False, **kwargs): """Creates a MixNet Medium model. """ model = _gen_mixnet_m( 'mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def mixnet_l(pretrained=False, **kwargs): """Creates a MixNet Large model. """ model = _gen_mixnet_m( 'mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs) return model @register_model def mixnet_xl(pretrained=False, **kwargs): """Creates a MixNet Extra-Large model. Not a paper spec, experimental def by RW w/ depth scaling. """ model = _gen_mixnet_m( 'mixnet_xl', channel_multiplier=1.6, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model @register_model def mixnet_xxl(pretrained=False, **kwargs): """Creates a MixNet Double Extra Large model. Not a paper spec, experimental def by RW w/ depth scaling. """ model = _gen_mixnet_m( 'mixnet_xxl', channel_multiplier=2.4, depth_multiplier=1.3, pretrained=pretrained, **kwargs) return model @register_model def tf_mixnet_s(pretrained=False, **kwargs): """Creates a MixNet Small model. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_mixnet_s( 'tf_mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def tf_mixnet_m(pretrained=False, **kwargs): """Creates a MixNet Medium model. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_mixnet_m( 'tf_mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs) return model @register_model def tf_mixnet_l(pretrained=False, **kwargs): """Creates a MixNet Large model. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_mixnet_m( 'tf_mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs) return model