""" Mixup and Cutmix Papers: mixup: Beyond Empirical Risk Minimization (https://arxiv.org/abs/1710.09412) CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features (https://arxiv.org/abs/1905.04899) Code Reference: CutMix: https://github.com/clovaai/CutMix-PyTorch Hacked together by / Copyright 2019, Ross Wightman """ import numpy as np import torch def one_hot(x, num_classes, on_value=1., off_value=0., device='cuda'): x = x.long().view(-1, 1) return torch.full((x.size()[0], num_classes), off_value, device=device).scatter_(1, x, on_value) def mixup_target(target, num_classes, lam=1., smoothing=0.0, device='cuda'): off_value = smoothing / num_classes on_value = 1. - smoothing + off_value y1 = one_hot(target, num_classes, on_value=on_value, off_value=off_value, device=device) y2 = one_hot(target.flip(0), num_classes, on_value=on_value, off_value=off_value, device=device) return y1 * lam + y2 * (1. - lam) def rand_bbox(img_shape, lam, margin=0., count=None): """ Standard CutMix bounding-box Generates a random square bbox based on lambda value. This impl includes support for enforcing a border margin as percent of bbox dimensions. Args: img_shape (tuple): Image shape as tuple lam (float): Cutmix lambda value margin (float): Percentage of bbox dimension to enforce as margin (reduce amount of box outside image) count (int): Number of bbox to generate """ ratio = np.sqrt(1 - lam) img_h, img_w = img_shape[-2:] cut_h, cut_w = int(img_h * ratio), int(img_w * ratio) margin_y, margin_x = int(margin * cut_h), int(margin * cut_w) cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count) cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count) yl = np.clip(cy - cut_h // 2, 0, img_h) yh = np.clip(cy + cut_h // 2, 0, img_h) xl = np.clip(cx - cut_w // 2, 0, img_w) xh = np.clip(cx + cut_w // 2, 0, img_w) return yl, yh, xl, xh def rand_bbox_minmax(img_shape, minmax, count=None): """ Min-Max CutMix bounding-box Inspired by Darknet cutmix impl, generates a random rectangular bbox based on min/max percent values applied to each dimension of the input image. Typical defaults for minmax are usually in the .2-.3 for min and .8-.9 range for max. Args: img_shape (tuple): Image shape as tuple minmax (tuple or list): Min and max bbox ratios (as percent of image size) count (int): Number of bbox to generate """ assert len(minmax) == 2 img_h, img_w = img_shape[-2:] cut_h = np.random.randint(int(img_h * minmax[0]), int(img_h * minmax[1]), size=count) cut_w = np.random.randint(int(img_w * minmax[0]), int(img_w * minmax[1]), size=count) yl = np.random.randint(0, img_h - cut_h, size=count) xl = np.random.randint(0, img_w - cut_w, size=count) yu = yl + cut_h xu = xl + cut_w return yl, yu, xl, xu def cutmix_bbox_and_lam(img_shape, lam, ratio_minmax=None, correct_lam=True, count=None): """ Generate bbox and apply lambda correction. """ if ratio_minmax is not None: yl, yu, xl, xu = rand_bbox_minmax(img_shape, ratio_minmax, count=count) else: yl, yu, xl, xu = rand_bbox(img_shape, lam, count=count) if correct_lam or ratio_minmax is not None: bbox_area = (yu - yl) * (xu - xl) lam = 1. - bbox_area / float(img_shape[-2] * img_shape[-1]) return (yl, yu, xl, xu), lam class Mixup: """ Mixup/Cutmix that applies different params to each element or whole batch Args: mixup_alpha (float): mixup alpha value, mixup is active if > 0. cutmix_alpha (float): cutmix alpha value, cutmix is active if > 0. cutmix_minmax (List[float]): cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None. prob (float): probability of applying mixup or cutmix per batch or element switch_prob (float): probability of switching to cutmix instead of mixup when both are active mode (str): how to apply mixup/cutmix params (per 'batch', 'pair' (pair of elements), 'elem' (element) correct_lam (bool): apply lambda correction when cutmix bbox clipped by image borders label_smoothing (float): apply label smoothing to the mixed target tensor num_classes (int): number of classes for target """ def __init__(self, mixup_alpha=1., cutmix_alpha=0., cutmix_minmax=None, prob=1.0, switch_prob=0.5, mode='batch', correct_lam=True, label_smoothing=0., num_classes=0): assert num_classes > 0, 'num_classes must be set for target generation' self.mixup_alpha = mixup_alpha self.cutmix_alpha = cutmix_alpha self.cutmix_minmax = cutmix_minmax if self.cutmix_minmax is not None: assert len(self.cutmix_minmax) == 2 # force cutmix alpha == 1.0 when minmax active to keep logic simple & safe self.cutmix_alpha = 1.0 self.mix_prob = prob self.switch_prob = switch_prob self.label_smoothing = label_smoothing self.num_classes = num_classes self.mode = mode self.correct_lam = correct_lam # correct lambda based on clipped area for cutmix self.mixup_enabled = True # set to false to disable mixing (intended tp be set by train loop) def _params_per_elem(self, batch_size): lam = np.ones(batch_size, dtype=np.float32) use_cutmix = np.zeros(batch_size, dtype=np.bool) if self.mixup_enabled: if self.mixup_alpha > 0. and self.cutmix_alpha > 0.: use_cutmix = np.random.rand(batch_size) < self.switch_prob lam_mix = np.where( use_cutmix, np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size), np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size)) elif self.mixup_alpha > 0.: lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size) elif self.cutmix_alpha > 0.: use_cutmix = np.ones(batch_size, dtype=np.bool) lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size) else: assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true." lam = np.where(np.random.rand(batch_size) < self.mix_prob, lam_mix.astype(np.float32), lam) return lam, use_cutmix def _params_per_batch(self): lam = 1. use_cutmix = False if self.mixup_enabled and np.random.rand() < self.mix_prob: if self.mixup_alpha > 0. and self.cutmix_alpha > 0.: use_cutmix = np.random.rand() < self.switch_prob lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) if use_cutmix else \ np.random.beta(self.mixup_alpha, self.mixup_alpha) elif self.mixup_alpha > 0.: lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha) elif self.cutmix_alpha > 0.: use_cutmix = True lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) else: assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true." lam = float(lam_mix) return lam, use_cutmix def _mix_elem(self, x): batch_size = len(x) lam_batch, use_cutmix = self._params_per_elem(batch_size) x_orig = x.clone() # need to keep an unmodified original for mixing source for i in range(batch_size): j = batch_size - i - 1 lam = lam_batch[i] if lam != 1.: if use_cutmix[i]: (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( x[i].shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh] lam_batch[i] = lam else: x[i] = x[i] * lam + x_orig[j] * (1 - lam) return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1) def _mix_pair(self, x): batch_size = len(x) lam_batch, use_cutmix = self._params_per_elem(batch_size // 2) x_orig = x.clone() # need to keep an unmodified original for mixing source for i in range(batch_size // 2): j = batch_size - i - 1 lam = lam_batch[i] if lam != 1.: if use_cutmix[i]: (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( x[i].shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh] x[j][:, yl:yh, xl:xh] = x_orig[i][:, yl:yh, xl:xh] lam_batch[i] = lam else: x[i] = x[i] * lam + x_orig[j] * (1 - lam) x[j] = x[j] * lam + x_orig[i] * (1 - lam) lam_batch = np.concatenate((lam_batch, lam_batch[::-1])) return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1) def _mix_batch(self, x): lam, use_cutmix = self._params_per_batch() if lam == 1.: return 1. if use_cutmix: (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( x.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) x[:, :, yl:yh, xl:xh] = x.flip(0)[:, :, yl:yh, xl:xh] else: x_flipped = x.flip(0).mul_(1. - lam) x.mul_(lam).add_(x_flipped) return lam def __call__(self, x, target): assert len(x) % 2 == 0, 'Batch size should be even when using this' if self.mode == 'elem': lam = self._mix_elem(x) elif self.mode == 'pair': lam = self._mix_pair(x) else: lam = self._mix_batch(x) target = mixup_target(target, self.num_classes, lam, self.label_smoothing, x.device) return x, target def blend(a, b, lam, is_tensor=False, round_output=True): if is_tensor: blend = a.to(dtype=torch.float32) * lam + b.to(dtype=torch.float32) * (1 - lam) if round_output: torch.round(blend, out=blend) else: blend = a.astype(np.float32) * lam + b.astype(np.float32) * (1 - lam) if round_output: np.rint(blend, out=blend) return blend class FastCollateMixup(Mixup): """ Fast Collate w/ Mixup/Cutmix that applies different params to each element or whole batch A Mixup impl that's performed while collating the batches. """ def _mix_elem_collate(self, output, batch, half=False, is_tensor=False): batch_size = len(batch) num_elem = batch_size // 2 if half else batch_size assert len(output) == num_elem lam_batch, use_cutmix = self._params_per_elem(num_elem) round_output = output.dtype == torch.uint8 for i in range(num_elem): j = batch_size - i - 1 lam = lam_batch[i] mixed = batch[i][0] if lam != 1.: if use_cutmix[i]: if not half: mixed = mixed.clone() if is_tensor else mixed.copy() # don't want to modify while iterating (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh] lam_batch[i] = lam else: mixed = blend(mixed, batch[j][0], lam, is_tensor, round_output) mixed = mixed.to(dtype=output.dtype) if is_tensor else torch.from_numpy(mixed.astype(np.uint8)) output[i].copy_(mixed) if half: lam_batch = np.concatenate((lam_batch, np.ones(num_elem))) return torch.tensor(lam_batch).unsqueeze(1) def _mix_pair_collate(self, output, batch, is_tensor=False): batch_size = len(batch) lam_batch, use_cutmix = self._params_per_elem(batch_size // 2) round_output = output.dtype == torch.uint8 for i in range(batch_size // 2): j = batch_size - i - 1 lam = lam_batch[i] mixed_i = batch[i][0] mixed_j = batch[j][0] assert 0 <= lam <= 1.0 if lam < 1.: if use_cutmix[i]: (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) patch_i = mixed_i[:, yl:yh, xl:xh] patch_i = patch_i.clone() if is_tensor else patch_i.copy() # don't want to modify while iterating mixed_i[:, yl:yh, xl:xh] = mixed_j[:, yl:yh, xl:xh] mixed_j[:, yl:yh, xl:xh] = patch_i lam_batch[i] = lam else: mixed_temp = blend(mixed_i, mixed_j, lam, is_tensor, round_output) mixed_j = blend(mixed_j, mixed_i, lam, is_tensor, round_output) mixed_i = mixed_temp if is_tensor: mixed_i = mixed_i.to(dtype=output.dtype) mixed_j = mixed_j.to(dtype=output.dtype) else: mixed_i = torch.from_numpy(mixed_i.astype(np.uint8)) mixed_j = torch.from_numpy(mixed_j.astype(np.uint8)) output[i].copy_(mixed_i) output[j].copy_(mixed_j) lam_batch = np.concatenate((lam_batch, lam_batch[::-1])) return torch.tensor(lam_batch).unsqueeze(1) def _mix_batch_collate(self, output, batch, is_tensor=False): batch_size = len(batch) lam, use_cutmix = self._params_per_batch() round_output = output.dtype == torch.uint8 if use_cutmix: (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) for i in range(batch_size): j = batch_size - i - 1 mixed = batch[i][0] if lam != 1.: if use_cutmix: mixed = mixed.clone() if is_tensor else mixed.copy() # don't want to modify while iterating mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh] else: mixed = blend(mixed, batch[j][0], lam, is_tensor, round_output) mixed = mixed.to(dtype=output.dtype) if is_tensor else torch.from_numpy(mixed.astype(np.uint8)) output[i].copy_(mixed) return lam def __call__(self, batch, _=None): batch_size = len(batch) assert batch_size % 2 == 0, 'Batch size should be even when using this' half = 'half' in self.mode if half: batch_size //= 2 is_tensor = isinstance(batch[0][0], torch.Tensor) output_dtype = batch[0][0].dtype if is_tensor else torch.uint8 # always uint8 if numpy src output = torch.zeros((batch_size, *batch[0][0].shape), dtype=output_dtype) if self.mode == 'elem' or self.mode == 'half': lam = self._mix_elem_collate(output, batch, half=half, is_tensor=is_tensor) elif self.mode == 'pair': lam = self._mix_pair_collate(output, batch, is_tensor=is_tensor) else: lam = self._mix_batch_collate(output, batch, is_tensor=is_tensor) target = torch.tensor([b[1] for b in batch], dtype=torch.int64) target = mixup_target(target, self.num_classes, lam, self.label_smoothing, device='cpu') target = target[:batch_size] return output, target