""" Eval metrics and related Hacked together by / Copyright 2020 Ross Wightman """ import torch from sklearn.metrics import precision_score,accuracy_score ,recall_score ,log_loss,f1_score,confusion_matrix import torch.nn.functional as F import warnings warnings.filterwarnings('always') # "error", "ignore", "always", "default", "module" or "once" class AverageMeter: """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" maxk = min(max(topk), output.size()[1]) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) return [correct[:min(k, maxk)].reshape(-1).float().sum(0) * 100. / batch_size for k in topk] def precision(output, target): _, y_pred = output.topk(1, 1, True, True) y_true = target y_true=y_true.tolist() y_pred=y_pred.tolist() y_pred=sum(y_pred, []) TP=0+0.00000000000000009 FP=0 for i in range(len(y_true)): if y_true[i]==1 and y_pred[i]==1: TP=TP+1 if y_true[i]==0 and y_pred[i]==1: FP=FP+1 precision=precision_score(y_true,y_pred) return precision*100 def recall(output, target): y_pred = torch.ge(output, 0.0) _, y_pred = output.topk(1, 1, True, True) y_true = target true_positive = len((y_true.flatten() == y_pred.flatten()).nonzero().flatten()) y_true=y_true.tolist() y_pred=y_pred.tolist() y_pred=sum(y_pred, []) TP=0+0.00000000000000009 FN=0 for i in range(len(y_true)): if y_true[i]==1 and y_pred[i]==1: TP=TP+1 if y_true[i]==1 and y_pred[i]==0: FN=FN+1 recall =recall_score(y_true,y_pred) return recall*100 def f1_scor(output, target): y_pred = torch.ge(output, 0.5) _, y_pred = output.topk(1, 1, True, True) y_true = target y_true=y_true.tolist() y_pred=y_pred.tolist() return f1_score(y_true,y_pred)*100