import math from collections import OrderedDict import torch from torch import nn as nn from timm.models.registry import register_model from timm.models.helpers import load_pretrained from timm.models.resnet import ResNet, get_padding, SEModule from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv1', 'classifier': 'fc', **kwargs } default_cfgs = { 'skresnet18': _cfg(url=''), 'skresnet26d': _cfg() } class SelectiveKernelAttn(nn.Module): def __init__(self, channels, num_paths=2, attn_channels=32, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d): super(SelectiveKernelAttn, self).__init__() self.num_paths = num_paths self.pool = nn.AdaptiveAvgPool2d(1) self.fc_reduce = nn.Conv2d(channels, attn_channels, kernel_size=1, bias=False) self.bn = norm_layer(attn_channels) self.act = act_layer(inplace=True) self.fc_select = nn.Conv2d(attn_channels, channels * num_paths, kernel_size=1, bias=False) def forward(self, x): assert x.shape[1] == self.num_paths x = torch.sum(x, dim=1) #print('attn sum', x.shape) x = self.pool(x) #print('attn pool', x.shape) x = self.fc_reduce(x) x = self.bn(x) x = self.act(x) x = self.fc_select(x) #print('attn sel', x.shape) B, C, H, W = x.shape x = x.view(B, self.num_paths, C // self.num_paths, H, W) #print('attn spl', x.shape) x = torch.softmax(x, dim=1) return x def _kernel_valid(k): if isinstance(k, (list, tuple)): for ki in k: return _kernel_valid(ki) assert k >= 3 and k % 2 class SelectiveKernelConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=[3, 5], stride=1, dilation=1, groups=1, attn_reduction=16, min_attn_channels=32, keep_3x3=True, use_attn=True, split_input=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d): super(SelectiveKernelConv, self).__init__() _kernel_valid(kernel_size) if not isinstance(kernel_size, list): kernel_size = [kernel_size] * 2 if keep_3x3: dilation = [dilation * (k - 1) // 2 for k in kernel_size] kernel_size = [3] * len(kernel_size) else: dilation = [dilation] * len(kernel_size) num_paths = len(kernel_size) self.num_paths = num_paths self.split_input = split_input self.in_channels = in_channels self.out_channels = out_channels if split_input: assert in_channels % num_paths == 0 and out_channels % num_paths == 0 in_channels = in_channels // num_paths out_channels = out_channels // num_paths groups = min(out_channels, groups) self.paths = nn.ModuleList() for k, d in zip(kernel_size, dilation): p = get_padding(k, stride, d) self.paths.append(nn.Sequential(OrderedDict([ ('conv', nn.Conv2d( in_channels, out_channels, kernel_size=k, stride=stride, padding=p, dilation=d, groups=groups)), ('bn', norm_layer(out_channels)), ('act', act_layer(inplace=True)) ]))) if use_attn: attn_channels = max(int(out_channels / attn_reduction), min_attn_channels) self.attn = SelectiveKernelAttn(out_channels, num_paths, attn_channels) else: self.attn = None def forward(self, x): if self.split_input: x_split = torch.split(x, self.in_channels // self.num_paths, 1) x_paths = [op(x_split[i]) for i, op in enumerate(self.paths)] else: x_paths = [op(x) for op in self.paths] if self.attn is not None: x = torch.stack(x_paths, dim=1) # print('paths', x_paths.shape) x_attn = self.attn(x) #print('attn', x_attn.shape) x = x * x_attn #print('amul', x.shape) if self.split_input: B, N, C, H, W = x.shape x = x.reshape(B, N * C, H, W) else: x = torch.sum(x, dim=1) #print('aout', x.shape) return x class SelectiveKernelBasic(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, use_se=False, sk_kwargs=None, reduce_first=1, dilation=1, previous_dilation=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d): super(SelectiveKernelBasic, self).__init__() sk_kwargs = sk_kwargs or {} assert cardinality == 1, 'BasicBlock only supports cardinality of 1' assert base_width == 64, 'BasicBlock doest not support changing base width' first_planes = planes // reduce_first outplanes = planes * self.expansion _selective_first = True # FIXME temporary, for experiments if _selective_first: self.conv1 = SelectiveKernelConv( inplanes, first_planes, stride=stride, dilation=dilation, **sk_kwargs) else: self.conv1 = nn.Conv2d( inplanes, first_planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, bias=False) self.bn1 = norm_layer(first_planes) self.act1 = act_layer(inplace=True) if _selective_first: self.conv2 = nn.Conv2d( first_planes, outplanes, kernel_size=3, padding=previous_dilation, dilation=previous_dilation, bias=False) else: self.conv2 = SelectiveKernelConv( first_planes, outplanes, dilation=previous_dilation, **sk_kwargs) self.bn2 = norm_layer(outplanes) self.se = SEModule(outplanes, planes // 4) if use_se else None self.act2 = act_layer(inplace=True) self.downsample = downsample self.stride = stride self.dilation = dilation def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.act1(out) out = self.conv2(out) out = self.bn2(out) if self.se is not None: out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.act2(out) return out class SelectiveKernelBottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, use_se=False, sk_kwargs=None, reduce_first=1, dilation=1, previous_dilation=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d): super(SelectiveKernelBottleneck, self).__init__() sk_kwargs = sk_kwargs or {} width = int(math.floor(planes * (base_width / 64)) * cardinality) first_planes = width // reduce_first outplanes = planes * self.expansion self.conv1 = nn.Conv2d(inplanes, first_planes, kernel_size=1, bias=False) self.bn1 = norm_layer(first_planes) self.act1 = act_layer(inplace=True) self.conv2 = SelectiveKernelConv( first_planes, width, stride=stride, dilation=dilation, groups=cardinality, **sk_kwargs) self.bn2 = norm_layer(width) self.act2 = act_layer(inplace=True) self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False) self.bn3 = norm_layer(outplanes) self.se = SEModule(outplanes, planes // 4) if use_se else None self.act3 = act_layer(inplace=True) self.downsample = downsample self.stride = stride self.dilation = dilation def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.act1(out) out = self.conv2(out) out = self.bn2(out) out = self.act2(out) out = self.conv3(out) out = self.bn3(out) if self.se is not None: out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.act3(out) return out @register_model def skresnet26d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-26 model. """ default_cfg = default_cfgs['skresnet26d'] sk_kwargs = dict( keep_3x3=False, ) model = ResNet( SelectiveKernelBottleneck, [2, 2, 2, 2], stem_width=32, stem_type='deep', avg_down=True, num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs), **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def skresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-18 model. """ default_cfg = default_cfgs['skresnet18'] sk_kwargs = dict( min_attn_channels=16, ) model = ResNet( SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs), **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def sksresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a ResNet-18 model. """ default_cfg = default_cfgs['skresnet18'] sk_kwargs = dict( min_attn_channels=16, split_input=True ) model = ResNet( SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs), **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model