""" LeViT Paper: `LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference` - https://arxiv.org/abs/2104.01136 @article{graham2021levit, title={LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference}, author={Benjamin Graham and Alaaeldin El-Nouby and Hugo Touvron and Pierre Stock and Armand Joulin and Herv\'e J\'egou and Matthijs Douze}, journal={arXiv preprint arXiv:22104.01136}, year={2021} } Adapted from official impl at https://github.com/facebookresearch/LeViT, original copyright bellow. This version combines both conv/linear models and fixes torchscript compatibility. Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # Modified from # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py # Copyright 2020 Ross Wightman, Apache-2.0 License from functools import partial from typing import Dict import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN from timm.layers import to_ntuple, get_act_layer, trunc_normal_ from ._builder import build_model_with_cfg from ._manipulate import checkpoint_seq from ._registry import register_model __all__ = ['LevitDistilled'] # model_registry will add each entrypoint fn to this def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.0.c', 'classifier': ('head.l', 'head_dist.l'), **kwargs } default_cfgs = dict( levit_128s=_cfg( url='https://dl.fbaipublicfiles.com/LeViT/LeViT-128S-96703c44.pth' ), levit_128=_cfg( url='https://dl.fbaipublicfiles.com/LeViT/LeViT-128-b88c2750.pth' ), levit_192=_cfg( url='https://dl.fbaipublicfiles.com/LeViT/LeViT-192-92712e41.pth' ), levit_256=_cfg( url='https://dl.fbaipublicfiles.com/LeViT/LeViT-256-13b5763e.pth' ), levit_384=_cfg( url='https://dl.fbaipublicfiles.com/LeViT/LeViT-384-9bdaf2e2.pth' ), levit_256d=_cfg(url='', classifier='head.l'), ) model_cfgs = dict( levit_128s=dict( embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 6, 8), depth=(2, 3, 4)), levit_128=dict( embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 8, 12), depth=(4, 4, 4)), levit_192=dict( embed_dim=(192, 288, 384), key_dim=32, num_heads=(3, 5, 6), depth=(4, 4, 4)), levit_256=dict( embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 4, 4)), levit_384=dict( embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4)), levit_256d=dict( embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 8, 6)), ) __all__ = ['Levit'] @register_model def levit_128s(pretrained=False, use_conv=False, **kwargs): return create_levit( 'levit_128s', pretrained=pretrained, use_conv=use_conv, **kwargs) @register_model def levit_128(pretrained=False, use_conv=False, **kwargs): return create_levit( 'levit_128', pretrained=pretrained, use_conv=use_conv, **kwargs) @register_model def levit_192(pretrained=False, use_conv=False, **kwargs): return create_levit( 'levit_192', pretrained=pretrained, use_conv=use_conv, **kwargs) @register_model def levit_256(pretrained=False, use_conv=False, **kwargs): return create_levit( 'levit_256', pretrained=pretrained, use_conv=use_conv, **kwargs) @register_model def levit_384(pretrained=False, use_conv=False, **kwargs): return create_levit( 'levit_384', pretrained=pretrained, use_conv=use_conv, **kwargs) @register_model def levit_256d(pretrained=False, use_conv=False, **kwargs): return create_levit( 'levit_256d', pretrained=pretrained, use_conv=use_conv, distilled=False, **kwargs) class ConvNorm(nn.Sequential): def __init__( self, in_chs, out_chs, kernel_size=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1, resolution=-10000): super().__init__() self.add_module('c', nn.Conv2d(in_chs, out_chs, kernel_size, stride, pad, dilation, groups, bias=False)) self.add_module('bn', nn.BatchNorm2d(out_chs)) nn.init.constant_(self.bn.weight, bn_weight_init) @torch.no_grad() def fuse(self): c, bn = self._modules.values() w = bn.weight / (bn.running_var + bn.eps) ** 0.5 w = c.weight * w[:, None, None, None] b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 m = nn.Conv2d( w.size(1), w.size(0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups) m.weight.data.copy_(w) m.bias.data.copy_(b) return m class LinearNorm(nn.Sequential): def __init__(self, in_features, out_features, bn_weight_init=1, resolution=-100000): super().__init__() self.add_module('c', nn.Linear(in_features, out_features, bias=False)) self.add_module('bn', nn.BatchNorm1d(out_features)) nn.init.constant_(self.bn.weight, bn_weight_init) @torch.no_grad() def fuse(self): l, bn = self._modules.values() w = bn.weight / (bn.running_var + bn.eps) ** 0.5 w = l.weight * w[:, None] b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 m = nn.Linear(w.size(1), w.size(0)) m.weight.data.copy_(w) m.bias.data.copy_(b) return m def forward(self, x): x = self.c(x) return self.bn(x.flatten(0, 1)).reshape_as(x) class NormLinear(nn.Sequential): def __init__(self, in_features, out_features, bias=True, std=0.02): super().__init__() self.add_module('bn', nn.BatchNorm1d(in_features)) self.add_module('l', nn.Linear(in_features, out_features, bias=bias)) trunc_normal_(self.l.weight, std=std) if self.l.bias is not None: nn.init.constant_(self.l.bias, 0) @torch.no_grad() def fuse(self): bn, l = self._modules.values() w = bn.weight / (bn.running_var + bn.eps) ** 0.5 b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5 w = l.weight * w[None, :] if l.bias is None: b = b @ self.l.weight.T else: b = (l.weight @ b[:, None]).view(-1) + self.l.bias m = nn.Linear(w.size(1), w.size(0)) m.weight.data.copy_(w) m.bias.data.copy_(b) return m def stem_b16(in_chs, out_chs, activation, resolution=224): return nn.Sequential( ConvNorm(in_chs, out_chs // 8, 3, 2, 1, resolution=resolution), activation(), ConvNorm(out_chs // 8, out_chs // 4, 3, 2, 1, resolution=resolution // 2), activation(), ConvNorm(out_chs // 4, out_chs // 2, 3, 2, 1, resolution=resolution // 4), activation(), ConvNorm(out_chs // 2, out_chs, 3, 2, 1, resolution=resolution // 8)) class Residual(nn.Module): def __init__(self, m, drop): super().__init__() self.m = m self.drop = drop def forward(self, x): if self.training and self.drop > 0: return x + self.m(x) * torch.rand( x.size(0), 1, 1, device=x.device).ge_(self.drop).div(1 - self.drop).detach() else: return x + self.m(x) class Subsample(nn.Module): def __init__(self, stride, resolution): super().__init__() self.stride = stride self.resolution = resolution def forward(self, x): B, N, C = x.shape x = x.view(B, self.resolution, self.resolution, C)[:, ::self.stride, ::self.stride] return x.reshape(B, -1, C) class Attention(nn.Module): ab: Dict[str, torch.Tensor] def __init__( self, dim, key_dim, num_heads=8, attn_ratio=4, act_layer=None, resolution=14, use_conv=False): super().__init__() ln_layer = ConvNorm if use_conv else LinearNorm self.use_conv = use_conv self.num_heads = num_heads self.scale = key_dim ** -0.5 self.key_dim = key_dim self.key_attn_dim = key_dim * num_heads self.val_dim = int(attn_ratio * key_dim) self.val_attn_dim = int(attn_ratio * key_dim) * num_heads self.qkv = ln_layer(dim, self.val_attn_dim + self.key_attn_dim * 2, resolution=resolution) self.proj = nn.Sequential( act_layer(), ln_layer(self.val_attn_dim, dim, bn_weight_init=0, resolution=resolution) ) self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution ** 2)) pos = torch.stack(torch.meshgrid(torch.arange(resolution), torch.arange(resolution))).flatten(1) rel_pos = (pos[..., :, None] - pos[..., None, :]).abs() rel_pos = (rel_pos[0] * resolution) + rel_pos[1] self.register_buffer('attention_bias_idxs', rel_pos) self.ab = {} @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and self.ab: self.ab = {} # clear ab cache def get_attention_biases(self, device: torch.device) -> torch.Tensor: if self.training: return self.attention_biases[:, self.attention_bias_idxs] else: device_key = str(device) if device_key not in self.ab: self.ab[device_key] = self.attention_biases[:, self.attention_bias_idxs] return self.ab[device_key] def forward(self, x): # x (B,C,H,W) if self.use_conv: B, C, H, W = x.shape q, k, v = self.qkv(x).view( B, self.num_heads, -1, H * W).split([self.key_dim, self.key_dim, self.val_dim], dim=2) attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device) attn = attn.softmax(dim=-1) x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) else: B, N, C = x.shape q, k, v = self.qkv(x).view( B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.val_dim], dim=3) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 3, 1) v = v.permute(0, 2, 1, 3) attn = q @ k * self.scale + self.get_attention_biases(x.device) attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim) x = self.proj(x) return x class AttentionSubsample(nn.Module): ab: Dict[str, torch.Tensor] def __init__( self, in_dim, out_dim, key_dim, num_heads=8, attn_ratio=2, act_layer=None, stride=2, resolution=14, resolution_out=7, use_conv=False): super().__init__() self.stride = stride self.num_heads = num_heads self.scale = key_dim ** -0.5 self.key_dim = key_dim self.key_attn_dim = key_dim * num_heads self.val_dim = int(attn_ratio * key_dim) self.val_attn_dim = self.val_dim * self.num_heads self.resolution = resolution self.resolution_out_area = resolution_out ** 2 self.use_conv = use_conv if self.use_conv: ln_layer = ConvNorm sub_layer = partial(nn.AvgPool2d, kernel_size=1, padding=0) else: ln_layer = LinearNorm sub_layer = partial(Subsample, resolution=resolution) self.kv = ln_layer(in_dim, self.val_attn_dim + self.key_attn_dim, resolution=resolution) self.q = nn.Sequential( sub_layer(stride=stride), ln_layer(in_dim, self.key_attn_dim, resolution=resolution_out) ) self.proj = nn.Sequential( act_layer(), ln_layer(self.val_attn_dim, out_dim, resolution=resolution_out) ) self.attention_biases = nn.Parameter(torch.zeros(num_heads, self.resolution ** 2)) k_pos = torch.stack(torch.meshgrid(torch.arange(resolution), torch.arange(resolution))).flatten(1) q_pos = torch.stack(torch.meshgrid( torch.arange(0, resolution, step=stride), torch.arange(0, resolution, step=stride))).flatten(1) rel_pos = (q_pos[..., :, None] - k_pos[..., None, :]).abs() rel_pos = (rel_pos[0] * resolution) + rel_pos[1] self.register_buffer('attention_bias_idxs', rel_pos) self.ab = {} # per-device attention_biases cache @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and self.ab: self.ab = {} # clear ab cache def get_attention_biases(self, device: torch.device) -> torch.Tensor: if self.training: return self.attention_biases[:, self.attention_bias_idxs] else: device_key = str(device) if device_key not in self.ab: self.ab[device_key] = self.attention_biases[:, self.attention_bias_idxs] return self.ab[device_key] def forward(self, x): if self.use_conv: B, C, H, W = x.shape k, v = self.kv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.val_dim], dim=2) q = self.q(x).view(B, self.num_heads, self.key_dim, self.resolution_out_area) attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device) attn = attn.softmax(dim=-1) x = (v @ attn.transpose(-2, -1)).reshape(B, -1, self.resolution, self.resolution) else: B, N, C = x.shape k, v = self.kv(x).view(B, N, self.num_heads, -1).split([self.key_dim, self.val_dim], dim=3) k = k.permute(0, 2, 3, 1) # BHCN v = v.permute(0, 2, 1, 3) # BHNC q = self.q(x).view(B, self.resolution_out_area, self.num_heads, self.key_dim).permute(0, 2, 1, 3) attn = q @ k * self.scale + self.get_attention_biases(x.device) attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, -1, self.val_attn_dim) x = self.proj(x) return x class Levit(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage NOTE: distillation is defaulted to True since pretrained weights use it, will cause problems w/ train scripts that don't take tuple outputs, """ def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=(192,), key_dim=64, depth=(12,), num_heads=(3,), attn_ratio=2, mlp_ratio=2, hybrid_backbone=None, down_ops=None, act_layer='hard_swish', attn_act_layer='hard_swish', use_conv=False, global_pool='avg', drop_rate=0., drop_path_rate=0.): super().__init__() act_layer = get_act_layer(act_layer) attn_act_layer = get_act_layer(attn_act_layer) ln_layer = ConvNorm if use_conv else LinearNorm self.use_conv = use_conv if isinstance(img_size, tuple): # FIXME origin impl passes single img/res dim through whole hierarchy, # not sure this model will be used enough to spend time fixing it. assert img_size[0] == img_size[1] img_size = img_size[0] self.num_classes = num_classes self.global_pool = global_pool self.num_features = embed_dim[-1] self.embed_dim = embed_dim self.grad_checkpointing = False num_stages = len(embed_dim) assert len(depth) == len(num_heads) == num_stages key_dim = to_ntuple(num_stages)(key_dim) attn_ratio = to_ntuple(num_stages)(attn_ratio) mlp_ratio = to_ntuple(num_stages)(mlp_ratio) down_ops = down_ops or ( # ('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride) ('Subsample', key_dim[0], embed_dim[0] // key_dim[0], 4, 2, 2), ('Subsample', key_dim[0], embed_dim[1] // key_dim[1], 4, 2, 2), ('',) ) self.patch_embed = hybrid_backbone or stem_b16(in_chans, embed_dim[0], activation=act_layer) self.blocks = [] resolution = img_size // patch_size for i, (ed, kd, dpth, nh, ar, mr, do) in enumerate( zip(embed_dim, key_dim, depth, num_heads, attn_ratio, mlp_ratio, down_ops)): for _ in range(dpth): self.blocks.append( Residual( Attention( ed, kd, nh, attn_ratio=ar, act_layer=attn_act_layer, resolution=resolution, use_conv=use_conv), drop_path_rate)) if mr > 0: h = int(ed * mr) self.blocks.append( Residual(nn.Sequential( ln_layer(ed, h, resolution=resolution), act_layer(), ln_layer(h, ed, bn_weight_init=0, resolution=resolution), ), drop_path_rate)) if do[0] == 'Subsample': # ('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride) resolution_out = (resolution - 1) // do[5] + 1 self.blocks.append( AttentionSubsample( *embed_dim[i:i + 2], key_dim=do[1], num_heads=do[2], attn_ratio=do[3], act_layer=attn_act_layer, stride=do[5], resolution=resolution, resolution_out=resolution_out, use_conv=use_conv)) resolution = resolution_out if do[4] > 0: # mlp_ratio h = int(embed_dim[i + 1] * do[4]) self.blocks.append( Residual(nn.Sequential( ln_layer(embed_dim[i + 1], h, resolution=resolution), act_layer(), ln_layer(h, embed_dim[i + 1], bn_weight_init=0, resolution=resolution), ), drop_path_rate)) self.blocks = nn.Sequential(*self.blocks) # Classifier head self.head = NormLinear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() @torch.jit.ignore def no_weight_decay(self): return {x for x in self.state_dict().keys() if 'attention_biases' in x} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^cls_token|pos_embed|patch_embed', # stem and embed blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=None, distillation=None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = NormLinear(self.embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.patch_embed(x) if not self.use_conv: x = x.flatten(2).transpose(1, 2) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool == 'avg': x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x class LevitDistilled(Levit): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.head_dist = NormLinear(self.num_features, self.num_classes) if self.num_classes > 0 else nn.Identity() self.distilled_training = False # must set this True to train w/ distillation token @torch.jit.ignore def get_classifier(self): return self.head, self.head_dist def reset_classifier(self, num_classes, global_pool=None, distillation=None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = NormLinear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.head_dist = NormLinear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() @torch.jit.ignore def set_distilled_training(self, enable=True): self.distilled_training = enable def forward_head(self, x): if self.global_pool == 'avg': x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1) x, x_dist = self.head(x), self.head_dist(x) if self.distilled_training and self.training and not torch.jit.is_scripting(): # only return separate classification predictions when training in distilled mode return x, x_dist else: # during standard train/finetune, inference average the classifier predictions return (x + x_dist) / 2 def checkpoint_filter_fn(state_dict, model): if 'model' in state_dict: # For deit models state_dict = state_dict['model'] D = model.state_dict() for k in state_dict.keys(): if k in D and D[k].ndim == 4 and state_dict[k].ndim == 2: state_dict[k] = state_dict[k][:, :, None, None] return state_dict def create_levit(variant, pretrained=False, distilled=True, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') model_cfg = dict(**model_cfgs[variant], **kwargs) model = build_model_with_cfg( LevitDistilled if distilled else Levit, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, **model_cfg) return model