import os from typing import Any, Dict, Optional, Union from urllib.parse import urlsplit from timm.layers import set_layer_config from ._pretrained import PretrainedCfg, split_model_name_tag from ._helpers import load_checkpoint from ._hub import load_model_config_from_hf from ._registry import is_model, model_entrypoint def parse_model_name(model_name): if model_name.startswith('hf_hub'): # NOTE for backwards compat, deprecate hf_hub use model_name = model_name.replace('hf_hub', 'hf-hub') parsed = urlsplit(model_name) assert parsed.scheme in ('', 'timm', 'hf-hub') if parsed.scheme == 'hf-hub': # FIXME may use fragment as revision, currently `@` in URI path return parsed.scheme, parsed.path else: model_name = os.path.split(parsed.path)[-1] return 'timm', model_name def safe_model_name(model_name, remove_source=True): # return a filename / path safe model name def make_safe(name): return ''.join(c if c.isalnum() else '_' for c in name).rstrip('_') if remove_source: model_name = parse_model_name(model_name)[-1] return make_safe(model_name) def create_model( model_name: str, pretrained: bool = False, pretrained_cfg: Optional[Union[str, Dict[str, Any], PretrainedCfg]] = None, pretrained_cfg_overlay: Optional[Dict[str, Any]] = None, checkpoint_path: str = '', scriptable: Optional[bool] = None, exportable: Optional[bool] = None, no_jit: Optional[bool] = None, **kwargs, ): """Create a model Lookup model's entrypoint function and pass relevant args to create a new model. **kwargs will be passed through entrypoint fn to timm.models.build_model_with_cfg() and then the model class __init__(). kwargs values set to None are pruned before passing. Args: model_name (str): name of model to instantiate pretrained (bool): load pretrained ImageNet-1k weights if true pretrained_cfg (Union[str, dict, PretrainedCfg]): pass in external pretrained_cfg for model pretrained_cfg_overlay (dict): replace key-values in base pretrained_cfg with these checkpoint_path (str): path of checkpoint to load _after_ the model is initialized scriptable (bool): set layer config so that model is jit scriptable (not working for all models yet) exportable (bool): set layer config so that model is traceable / ONNX exportable (not fully impl/obeyed yet) no_jit (bool): set layer config so that model doesn't utilize jit scripted layers (so far activations only) Keyword Args: drop_rate (float): dropout rate for training (default: 0.0) global_pool (str): global pool type (default: 'avg') **: other kwargs are consumed by builder or model __init__() """ # Parameters that aren't supported by all models or are intended to only override model defaults if set # should default to None in command line args/cfg. Remove them if they are present and not set so that # non-supporting models don't break and default args remain in effect. kwargs = {k: v for k, v in kwargs.items() if v is not None} model_source, model_name = parse_model_name(model_name) if model_source == 'hf-hub': assert not pretrained_cfg, 'pretrained_cfg should not be set when sourcing model from Hugging Face Hub.' # For model names specified in the form `hf-hub:path/architecture_name@revision`, # load model weights + pretrained_cfg from Hugging Face hub. pretrained_cfg, model_name = load_model_config_from_hf(model_name) else: model_name, pretrained_tag = split_model_name_tag(model_name) if not pretrained_cfg: # a valid pretrained_cfg argument takes priority over tag in model name pretrained_cfg = pretrained_tag if not is_model(model_name): raise RuntimeError('Unknown model (%s)' % model_name) create_fn = model_entrypoint(model_name) with set_layer_config(scriptable=scriptable, exportable=exportable, no_jit=no_jit): model = create_fn( pretrained=pretrained, pretrained_cfg=pretrained_cfg, pretrained_cfg_overlay=pretrained_cfg_overlay, **kwargs, ) if checkpoint_path: load_checkpoint(model, checkpoint_path) return model