import torch import torchvision.transforms.functional as F try: from torchvision.transforms.functional import InterpolationMode has_interpolation_mode = True except ImportError: has_interpolation_mode = False from PIL import Image import warnings import math import random import numpy as np class ToNumpy: def __call__(self, pil_img): np_img = np.array(pil_img, dtype=np.uint8) if np_img.ndim < 3: np_img = np.expand_dims(np_img, axis=-1) np_img = np.rollaxis(np_img, 2) # HWC to CHW return np_img class ToTensor: def __init__(self, dtype=torch.float32): self.dtype = dtype def __call__(self, pil_img): np_img = np.array(pil_img, dtype=np.uint8) if np_img.ndim < 3: np_img = np.expand_dims(np_img, axis=-1) np_img = np.rollaxis(np_img, 2) # HWC to CHW return torch.from_numpy(np_img).to(dtype=self.dtype) # Pillow is deprecating the top-level resampling attributes (e.g., Image.BILINEAR) in # favor of the Image.Resampling enum. The top-level resampling attributes will be # removed in Pillow 10. if hasattr(Image, "Resampling"): _pil_interpolation_to_str = { Image.Resampling.NEAREST: 'nearest', Image.Resampling.BILINEAR: 'bilinear', Image.Resampling.BICUBIC: 'bicubic', Image.Resampling.BOX: 'box', Image.Resampling.HAMMING: 'hamming', Image.Resampling.LANCZOS: 'lanczos', } else: _pil_interpolation_to_str = { Image.NEAREST: 'nearest', Image.BILINEAR: 'bilinear', Image.BICUBIC: 'bicubic', Image.BOX: 'box', Image.HAMMING: 'hamming', Image.LANCZOS: 'lanczos', } _str_to_pil_interpolation = {b: a for a, b in _pil_interpolation_to_str.items()} if has_interpolation_mode: _torch_interpolation_to_str = { InterpolationMode.NEAREST: 'nearest', InterpolationMode.BILINEAR: 'bilinear', InterpolationMode.BICUBIC: 'bicubic', InterpolationMode.BOX: 'box', InterpolationMode.HAMMING: 'hamming', InterpolationMode.LANCZOS: 'lanczos', } _str_to_torch_interpolation = {b: a for a, b in _torch_interpolation_to_str.items()} else: _pil_interpolation_to_torch = {} _torch_interpolation_to_str = {} def str_to_pil_interp(mode_str): return _str_to_pil_interpolation[mode_str] def str_to_interp_mode(mode_str): if has_interpolation_mode: return _str_to_torch_interpolation[mode_str] else: return _str_to_pil_interpolation[mode_str] def interp_mode_to_str(mode): if has_interpolation_mode: return _torch_interpolation_to_str[mode] else: return _pil_interpolation_to_str[mode] _RANDOM_INTERPOLATION = (str_to_interp_mode('bilinear'), str_to_interp_mode('bicubic')) class RandomResizedCropAndInterpolation: """Crop the given PIL Image to random size and aspect ratio with random interpolation. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear'): if isinstance(size, (list, tuple)): self.size = tuple(size) else: self.size = (size, size) if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): warnings.warn("range should be of kind (min, max)") if interpolation == 'random': self.interpolation = _RANDOM_INTERPOLATION else: self.interpolation = str_to_interp_mode(interpolation) self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ area = img.size[0] * img.size[1] for attempt in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback to central crop in_ratio = img.size[0] / img.size[1] if in_ratio < min(ratio): w = img.size[0] h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = img.size[1] w = int(round(h * max(ratio))) else: # whole image w = img.size[0] h = img.size[1] i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return i, j, h, w def __call__(self, img): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation return F.resized_crop(img, i, j, h, w, self.size, interpolation) def __repr__(self): if isinstance(self.interpolation, (tuple, list)): interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation]) else: interpolate_str = interp_mode_to_str(self.interpolation) format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0})'.format(interpolate_str) return format_string