import math from torch import nn as nn from .registry import register_model from .helpers import load_pretrained from .layers import SelectiveKernelConv, ConvBnAct, create_attn from .resnet import ResNet from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv1', 'classifier': 'fc', **kwargs } default_cfgs = { 'skresnet18': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth'), 'skresnet34': _cfg(url=''), 'skresnet50': _cfg(), 'skresnet50d': _cfg(), 'skresnext50_32x4d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth'), } class SelectiveKernelBasic(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, sk_kwargs=None, reduce_first=1, dilation=1, first_dilation=None, drop_block=None, drop_path=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None): super(SelectiveKernelBasic, self).__init__() sk_kwargs = sk_kwargs or {} conv_kwargs = dict(drop_block=drop_block, act_layer=act_layer, norm_layer=norm_layer) assert cardinality == 1, 'BasicBlock only supports cardinality of 1' assert base_width == 64, 'BasicBlock doest not support changing base width' first_planes = planes // reduce_first outplanes = planes * self.expansion first_dilation = first_dilation or dilation _selective_first = True # FIXME temporary, for experiments if _selective_first: self.conv1 = SelectiveKernelConv( inplanes, first_planes, stride=stride, dilation=first_dilation, **conv_kwargs, **sk_kwargs) conv_kwargs['act_layer'] = None self.conv2 = ConvBnAct( first_planes, outplanes, kernel_size=3, dilation=dilation, **conv_kwargs) else: self.conv1 = ConvBnAct( inplanes, first_planes, kernel_size=3, stride=stride, dilation=first_dilation, **conv_kwargs) conv_kwargs['act_layer'] = None self.conv2 = SelectiveKernelConv( first_planes, outplanes, dilation=dilation, **conv_kwargs, **sk_kwargs) self.se = create_attn(attn_layer, outplanes) self.act = act_layer(inplace=True) self.downsample = downsample self.stride = stride self.dilation = dilation self.drop_block = drop_block self.drop_path = drop_path def zero_init_last_bn(self): nn.init.zeros_(self.conv2.bn.weight) def forward(self, x): residual = x x = self.conv1(x) x = self.conv2(x) if self.se is not None: x = self.se(x) if self.drop_path is not None: x = self.drop_path(x) if self.downsample is not None: residual = self.downsample(residual) x += residual x = self.act(x) return x class SelectiveKernelBottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, sk_kwargs=None, reduce_first=1, dilation=1, first_dilation=None, drop_block=None, drop_path=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None): super(SelectiveKernelBottleneck, self).__init__() sk_kwargs = sk_kwargs or {} conv_kwargs = dict(drop_block=drop_block, act_layer=act_layer, norm_layer=norm_layer) width = int(math.floor(planes * (base_width / 64)) * cardinality) first_planes = width // reduce_first outplanes = planes * self.expansion first_dilation = first_dilation or dilation self.conv1 = ConvBnAct(inplanes, first_planes, kernel_size=1, **conv_kwargs) self.conv2 = SelectiveKernelConv( first_planes, width, stride=stride, dilation=first_dilation, groups=cardinality, **conv_kwargs, **sk_kwargs) conv_kwargs['act_layer'] = None self.conv3 = ConvBnAct(width, outplanes, kernel_size=1, **conv_kwargs) self.se = create_attn(attn_layer, outplanes) self.act = act_layer(inplace=True) self.downsample = downsample self.stride = stride self.dilation = dilation self.drop_block = drop_block self.drop_path = drop_path def zero_init_last_bn(self): nn.init.zeros_(self.conv3.bn.weight) def forward(self, x): residual = x x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) if self.se is not None: x = self.se(x) if self.drop_path is not None: x = self.drop_path(x) if self.downsample is not None: residual = self.downsample(residual) x += residual x = self.act(x) return x @register_model def skresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a Selective Kernel ResNet-18 model. Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this variation splits the input channels to the selective convolutions to keep param count down. """ default_cfg = default_cfgs['skresnet18'] sk_kwargs = dict( min_attn_channels=16, attn_reduction=8, split_input=True ) model = ResNet( SelectiveKernelBasic, [2, 2, 2, 2], num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs), zero_init_last_bn=False, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def skresnet34(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a Selective Kernel ResNet-34 model. Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this variation splits the input channels to the selective convolutions to keep param count down. """ default_cfg = default_cfgs['skresnet34'] sk_kwargs = dict( min_attn_channels=16, attn_reduction=8, split_input=True ) model = ResNet( SelectiveKernelBasic, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs), zero_init_last_bn=False, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def skresnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a Select Kernel ResNet-50 model. Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this variation splits the input channels to the selective convolutions to keep param count down. """ sk_kwargs = dict( split_input=True, ) default_cfg = default_cfgs['skresnet50'] model = ResNet( SelectiveKernelBottleneck, [3, 4, 6, 3], num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs), zero_init_last_bn=False, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def skresnet50d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a Select Kernel ResNet-50-D model. Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this variation splits the input channels to the selective convolutions to keep param count down. """ sk_kwargs = dict( split_input=True, ) default_cfg = default_cfgs['skresnet50d'] model = ResNet( SelectiveKernelBottleneck, [3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, num_classes=num_classes, in_chans=in_chans, block_args=dict(sk_kwargs=sk_kwargs), zero_init_last_bn=False, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model @register_model def skresnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): """Constructs a Select Kernel ResNeXt50-32x4d model. This should be equivalent to the SKNet50 model in the Select Kernel Paper """ default_cfg = default_cfgs['skresnext50_32x4d'] model = ResNet( SelectiveKernelBottleneck, [3, 4, 6, 3], cardinality=32, base_width=4, num_classes=num_classes, in_chans=in_chans, zero_init_last_bn=False, **kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained(model, default_cfg, num_classes, in_chans) return model